STRINGSTRING
arcB arcB yahK yahK lacI lacI pflB pflB mgsA mgsA adhE adhE ldhA ldhA aldA aldA astD astD ydjG ydjG dld dld eutE eutE fucO fucO aldB aldB lldD lldD gldA gldA frdA frdA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
arcBAerobic respiration control sensor protein ArcB; Member of the two-component regulatory system ArcB/ArcA. Sensor-regulator protein for anaerobic repression of the arc modulon. Activates ArcA via a four-step phosphorelay. ArcB can also dephosphorylate ArcA by a reverse phosphorelay involving His-717 and Asp-576. (778 aa)
yahKBroad specificity NADPH-dependent aldehyde reductase, Zn-containing; Catalyzes the reduction of a wide range of aldehydes into their corresponding alcohols. Has a strong preference for NADPH over NADH as the electron donor. Cannot use a ketone as substrate. Is a major source of NADPH-dependent aldehyde reductase activity in E.coli. The in vivo functions of YahK has yet to be determined. Belongs to the zinc-containing alcohol dehydrogenase family. (349 aa)
lacILactose-inducible lac operon transcriptional repressor; Repressor of the lactose operon. Binds allolactose as an inducer. (360 aa)
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
mgsAMethylglyoxal synthase; Catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate. (152 aa)
adhEAcetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa)
ldhAFermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa)
aldAAldehyde dehydrogenase A, NAD-linked; Acts on lactaldehyde as well as other aldehydes. (479 aa)
astDSuccinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. (492 aa)
ydjGMethylglyoxal reductase, NADH-dependent; Catalyzes the NADH-dependent reduction of methylglyoxal (2- oxopropanal) in vitro. It is not known if this activity has physiological significance. Cannot use NADPH as a cosubstrate. Seems to play some role in intestinal colonization. (326 aa)
dldD-lactate dehydrogenase, FAD-binding, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Electrons derived from D-lactate oxidation are transferred to the ubiquinone/cytochrome electron transfer chain, where they may be used to provide energy for the active transport of a variety of amino acids and sugars across the membrane. (571 aa)
eutEAldehyde oxidoreductase, ethanolamine utilization protein; May act as an acetaldehyde dehydrogenase that converts acetaldehyde into acetyl-CoA. (467 aa)
fucOL-1,2-propanediol oxidoreductase; Protein involved in carbohydrate catabolic process and glycolate metabolic process; Belongs to the iron-containing alcohol dehydrogenase family. (382 aa)
aldBAldehyde dehydrogenase B; Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4-hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde. (512 aa)
lldDL-lactate dehydrogenase, FMN-linked; Catalyzes the conversion of L-lactate to pyruvate. Seems to be a primary dehydrogenase in the respiratory chain. To a lesser extent, can also oxidize DL-alpha-hydroxybutyrate, but not D-lactate. (396 aa)
gldAGlycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa)
frdAAnaerobic fumarate reductase catalytic and NAD/flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (602 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (16%) [HD]