STRINGSTRING
glgP glgP phoE phoE aroL aroL entD entD entF entF entC entC entE entE entB entB entA entA sdhD sdhD sdhA sdhA aroG aroG gpmA gpmA aroA aroA aspC aspC ompF ompF rne rne trpE trpE cfa cfa pykF pykF ydiB ydiB aroD aroD aroH aroH gapA gapA pykA pykA ftnB ftnB hisC hisC wzxC wzxC wzc wzc wzb wzb cdd cdd rihB rihB menF menF aroC aroC rseA rseA rpoE rpoE pheA pheA tyrA tyrA aroF aroF csrA csrA eno eno pgk pgk crp crp aroK aroK glgA glgA glgC glgC hdeB hdeB hdeA hdeA hdeD hdeD gpmM gpmM pfkA pfkA tpiA tpiA pgi pgi deoA deoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
glgPGlycogen phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (815 aa)
phoEOuter membrane porin PhoE; Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes; Belongs to the Gram-negative porin family. (351 aa)
aroLShikimate kinase II; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate. Belongs to the shikimate kinase family. AroL subfamily. (174 aa)
entDPhosphopantetheinyltransferase component of enterobactin synthase multienzyme complex; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. Plays an essential role in the assembly of the enterobactin by catalyzing the transfer of the 4'-phosphopantetheine (Ppant) moiety from coenzyme A to the apo- domains of both EntB (ArCP do [...] (206 aa)
entFEnterobactin synthase multienzyme complex component, ATP-dependent; Activates the carboxylate group of L-serine via ATP-dependent PPi exchange reactions to the aminoacyladenylate, preparing that molecule for the final stages of enterobactin synthesis. Holo-EntF acts as the catalyst for the formation of the three amide and three ester bonds present in the cyclic (2,3-dihydroxybenzoyl)serine trimer enterobactin, using seryladenylate and acyl-holo-EntB (acylated with 2,3-dihydroxybenzoate by EntE). (1293 aa)
entCIsochorismate synthase 1; Involved in the biosynthesis of the siderophore enterobactin (macrocyclic trimeric lactone of N-(2,3-dihydroxybenzoyl)-serine). Catalyzes the reversible conversion of chorismate to isochorismate. (391 aa)
entE2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntE proccesses via a two-step adenylation-ligation reaction (bi-uni-uni-bi ping-pong mechanism). First, it catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (D [...] (536 aa)
entBIsochorismatase; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntB is a bifunctional protein that serves as an isochorismate lyase and an aryl carrier protein (ArCP). Catalyzes the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB), the precursor of 2,3- dihydroxybenzoate (DHB). In the enterob [...] (285 aa)
entA2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. Catalyzes the reversible NAD-dependent oxidation of the C3-hydroxyl group of 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB), producing the transient intermediate 2-hydroxy-3-oxo-4,6- cyclohexadiene-1-carboxylate, which undergoes rapid aromatization to the final product, 2,3-dihydroxybenzoate (2,3-DHB). Only the compounds with a C3-hydroxyl group such as methyl 2,3-dihydro-2,3- dihydroxyb [...] (248 aa)
sdhDSuccinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa)
aroG3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, phenylalanine repressible; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP); Belongs to the class-I DAHP synthase family. (350 aa)
gpmAPhosphoglyceromutase 1; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa)
aroA5-enolpyruvylshikimate-3-phosphate synthetase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (427 aa)
aspCAspartate aminotransferase, PLP-dependent; Aspartate aminotransferase; Protein involved in cellular amino acid catabolic process and aspartate biosynthetic process. (396 aa)
ompFOuter membrane porin 1a (Ia;b;F); Forms pores that allow passive diffusion of small molecules across the outer membrane. (Microbial infection) A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA- EC536-mediated toxicity; Belongs to the Gram-negative porin family. (362 aa)
rneEndoribonuclease; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Can also process other RNA species, such as RNAI, a molecule that controls the replication of ColE1 plasmid, and the cell division inhibitor DicF- RNA. It initiates the decay of RNAs by cutting them internally near their 5'-end. It is able to remove poly(A) tails by an endonucleolytic process. Required to initiate rRNA degradation during both starvation and quality control; ac [...] (1061 aa)
trpEComponent I of anthranilate synthase; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high conce [...] (520 aa)
cfaCyclopropane fatty acyl phospholipid synthase, SAM-dependent; Transfers a methylene group from S-adenosyl-L-methionine to the cis double bond of an unsaturated fatty acid chain resulting in the replacement of the double bond with a methylene bridge. (382 aa)
pykFPyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa)
ydiBQuinate/shikimate 5-dehydrogenase, NAD(P)-binding; The actual biological function of YdiB remains unclear, nor is it known whether 3-dehydroshikimate or quinate represents the natural substrate. Catalyzes the reversible NAD-dependent reduction of both 3-dehydroshikimate (DHSA) and 3-dehydroquinate to yield shikimate (SA) and quinate, respectively. It can use both NAD or NADP for catalysis, however it has higher catalytic efficiency with NAD. (288 aa)
aroD3-dehydroquinate dehydratase; Involved in the third step of the chorismate pathway, which leads to the biosynthesis of aromatic amino acids (AroAA). Catalyzes the cis-dehydration of 3-dehydroquinate (DHQ) and introduces the first double bond of the aromatic ring to yield 3-dehydroshikimate. The reaction involves the formation of an imine intermediate between the keto group of 3-dehydroquinate and the epsylon-amino group of a lys-170 at the active site. (252 aa)
aroH3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tryptophan repressible; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (348 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa)
pykAPyruvate kinase II, glucose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (480 aa)
ftnBFerritin B, putative ferrous iron reservoir; Ferritin-like protein; Protein involved in iron ion transport. (167 aa)
hisCHistidinol-phosphate aminotransferase; Protein involved in histidine biosynthetic process; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (356 aa)
wzxCPutative colanic acid exporter; Probable export protein; Belongs to the polysaccharide synthase family. (492 aa)
wzcColanic acid production tyrosine-protein kinase; Required for the extracellular polysaccharide colanic acid synthesis. The autophosphorylated form is inactive. Probably involved in the export of colanic acid from the cell to medium. Phosphorylates udg. (720 aa)
wzbColanic acid production protein-tyrosine-phosphatase; Dephosphorylates Wzc. Required for the extracellular polysaccharide colanic acid synthesis, probably involved in the export of colanic acid from the cell to medium. Involved in protection of cells against contact- dependent growth inhibition (CDI), probably due to the loss of a physical impediment to cell-cell contact; Belongs to the low molecular weight phosphotyrosine protein phosphatase family. (147 aa)
cddCytidine/deoxycytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis. (294 aa)
rihBRibonucleoside hydrolase 2; Hydrolyzes cytidine or uridine to ribose and cytosine or uracil, respectively. Has a clear preference for cytidine over uridine. Strictly specific for ribonucleosides. Has a low but significant activity for the purine nucleoside xanthosine; Belongs to the IUNH family. RihB subfamily. (313 aa)
menFIsochorismate synthase 2; Catalyzes the conversion of chorismate to isochorismate. Can also catalyze the reverse reaction, but with a lower efficiency. (431 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. It uses NADPH to reduce FMN. (361 aa)
rseAAnti-sigma factor; An anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-E (RpoE). ECF sigma factors are held in an inactive form by an anti-sigma factor until released by regulated intramembrane proteolysis (RIP). RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, DegS), then within the membrane itself (site-2 protease, S2P, RseP), while cytoplasmic proteases finish degrading [...] (216 aa)
rpoERNA polymerase sigma E factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase (RNAP) to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma-E controls the envelope stress response, responding to periplasmic protein stress, increased levels of periplasmic lipopolysaccharide (LPS) as well as heat shock and oxidative stress; it controls protein processing in the extracytoplasmic compartment. The 90 member regulon consists of the genes necessary for the synthesis and maintenance of both proteins and LPS of the outer me [...] (191 aa)
pheAChorismate mutase and prephenate dehydratase, P-protein; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate. (386 aa)
tyrAChorismate mutase-T and prephenate dehydrogenase; Protein involved in L-phenylalanine biosynthetic process and tyrosine biosynthetic process. (373 aa)
aroF3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP); Belongs to the class-I DAHP synthase family. (356 aa)
csrAPleiotropic regulatory protein for carbon source metabolism; A key translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability, initially identified for its effects on central carbon metabolism. Mediates global changes in gene expression, shifting from rapid growth to stress survival by linking envelope stress, the stringent response and the catabolite repression systems. Binds to the 5'-UTR of mRNA to repress or activate translation; 2 binding sites on the homodimer can bridge 2 sites within target RNA (By similarity). Exerts reciprocal effects on [...] (61 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, [...] (432 aa)
pgkPhosphoglycerate kinase; Protein involved in glycolysis and gluconeogenesis; Belongs to the phosphoglycerate kinase family. (387 aa)
crpcAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] (210 aa)
aroKShikimate kinase I; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate. Belongs to the shikimate kinase family. (173 aa)
glgAGlycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose. (477 aa)
glgCGlucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc; Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (431 aa)
hdeBAcid-resistance protein; Required for optimal acid stress protection, which is important for survival of enteric bacteria in the acidic environment of the host stomach. Exhibits a chaperone-like activity at acidic pH by preventing the aggregation of many different periplasmic proteins. (108 aa)
hdeAStress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. (110 aa)
hdeDAcid-resistance membrane protein. (190 aa)
gpmMPhosphoglycero mutase III, cofactor-independent; Catalyzes the interconversion of 2-phosphoglycerate (2-PGA) and 3-phosphoglycerate (3-PGA). (514 aa)
pfkA6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (320 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
pgiGlucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa)
deoAThymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family. (440 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]