STRINGSTRING
fecC fecC rof rof sfmH sfmH borD borD ompT ompT ompA ompA csgA csgA malX malX cutC cutC yfaL yfaL rpsL rpsL feoB feoB atpC atpC atpG atpG atpA atpA atpH atpH atpF atpF rho rho fecE fecE fecD fecD fecB fecB fecI fecI fimH fimH yjjW yjjW yjjI yjjI nadR nadR yaeP yaeP
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fecCFerric citrate ABC transporter permease; Part of the binding-protein-dependent transport system for citrate-dependent Fe(3+). Probably responsible for the translocation of the substrate across the membrane. (332 aa)
rofModulator of Rho-dependent transcription termination; Suppresses temperature-sensitive mutations in essential genes by modulating rho-dependent transcription termination. (84 aa)
sfmHFimA homolog, function unknown; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. (327 aa)
borDDLP12 prophage; Bacteriophage lambda Bor protein homolog; Belongs to the lambda phage bor family. (97 aa)
ompTDLP12 prophage; Protease that can cleave T7 RNA polymerase, ferric enterobactin receptor protein (FEP), antimicrobial peptide protamine and other proteins. This protease has a specificity for paired basic residues. (317 aa)
ompAOuter membrane protein A (3a;II*;G;d); With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm (Probable). Plays a role in resistance to environmental stress, and a role in outer membrane functionality and cell shape. Non-covalently binds peptidoglycan (Probable). Acts as a porin with low permeability that allows slow penetration of small solutes. A very abundant protein, there can be up to 210,000 OmpA molecules per cell. Reconstitution in unilamellar lipid vesicles shows only about 3% of the protein is in an open conformation, whic [...] (346 aa)
csgACurlin subunit, amyloid curli fibers, cryptic; Curlin is the structural subunit of the curli fimbriae. Curli are coiled surface structures that assemble preferentially at growth temperatures below 37 degrees Celsius. Curli can bind to fibronectin; Belongs to the CsgA/CsgB family. (151 aa)
malXMaltose and glucose-specific PTS enzyme IIB component and IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in maltose transport. MalX can also recognize and transport glucose even though this sugar may not represent the natural substrate of the system. (530 aa)
cutCCopper homeostasis protein; Participates in the control of copper homeostasis. Belongs to the CutC family. (248 aa)
yfaLAdhesin; Probably an autotransporter. (1250 aa)
rpsL30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. Cryo-EM studies suggest that S12 contacts the EF-Tu bound tRNA in the A-site during codon-recognition. This contact is most likely broken as the aminoacyl-tRNA moves into the peptidyl transferase center in the 50S subunit; Belongs to the universal ribosomal protein uS12 family. (124 aa)
feoBFerrous iron transporter protein B and GTP-binding protein; Transporter of a GTP-driven Fe(2+) uptake system, probably couples GTP-binding to channel opening and Fe(2+) uptake. A guanine nucleotide-binding protein (G proteins) in which the guanine nucleotide binding site alternates between an active, GTP-bound state and an inactive, GDP- bound state. This protein has fast intrinsic GDP release, mediated by the G5 loop (about residues 149-158). Presumably GTP hydrolysis leads to conformational changes and channel closing. A GDP release mechanism involving a conformational change of the [...] (773 aa)
atpCF1 sector of membrane-bound ATP synthase, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane; Belongs to the ATPase epsilon chain family. (139 aa)
atpGF1 sector of membrane-bound ATP synthase, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa)
atpAF1 sector of membrane-bound ATP synthase, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa)
atpHF1 sector of membrane-bound ATP synthase, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa)
atpFF0 sector of membrane-bound ATP synthase, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
rhoTranscription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. RNA-dependent NTPase which utilizes all four ribonucleoside triphosphates as substrates. (419 aa)
fecEFe(3+) dicitrate transport ATP-binding protein FecE; Part of the binding-protein-dependent transport system for citrate-dependent Fe(3+). Probably responsible for energy coupling to the transport system. (255 aa)
fecDFerric citrate ABC transporter permease; Part of the binding-protein-dependent transport system for citrate-dependent Fe(3+). Probably responsible for the translocation of the substrate across the membrane. (318 aa)
fecBFerric citrate ABC transporter periplasmic binding protein; Binds citrate-dependent Fe(3+); part of the binding-protein- dependent transport system for uptake of citrate-dependent Fe(3+). (300 aa)
fecIRNA polymerase sigma-19 factor, fec operon-specific; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor regulates the fec genes for iron dicitrate transport (Probable); Belongs to the sigma-70 factor family. ECF subfamily. (173 aa)
fimHMinor component of type 1 fimbriae; Involved in regulation of length and mediation of adhesion of type 1 fimbriae (but not necessary for the production of fimbriae). Adhesin responsible for the binding to D-mannose. It is laterally positioned at intervals in the structure of the type 1 fimbriae. In order to integrate FimH in the fimbriae FimF and FimG are needed. (300 aa)
yjjWPutative activating enzyme; Protein involved in anaerobic respiration and protein modification process; Belongs to the organic radical-activating enzymes family. (287 aa)
yjjIDUF3029 family protein, putative glycine radical enzyme. (516 aa)
nadRTrifunctional NAD biosynthesis/regulator protein NadR; This enzyme has three activities: DNA binding, nicotinamide mononucleotide (NMN) adenylyltransferase and ribosylnicotinamide (RN) kinase. The DNA-binding domain binds to the nadB operator sequence in an NAD- and ATP-dependent manner. As NAD levels increase within the cell, the affinity of NadR for the nadB operator regions of nadA, nadB, and pncB increases, repressing the transcription of these genes. The RN kinase activity catalyzes the phosphorylation of RN to form nicotinamide ribonucleotide. The NMN adenylyltransferase activity [...] (410 aa)
yaePUPF0253 family protein; Belongs to the UPF0253 family. (66 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (22%) [HD]