STRINGSTRING
puuC puuC mutT mutT aldA aldA rplS rplS infB infB rpsD rpsD rpsN rpsN rplN rplN trxB trxB rpsB rpsB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
puuCGamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase; Catalyzes the oxidation of 3-hydroxypropionaldehyde (3-HPA) to 3-hydroxypropionic acid (3-HP). It acts preferentially with NAD but can also use NADP. 3-HPA appears to be the most suitable substrate for PuuC followed by isovaleraldehyde, propionaldehyde, butyraldehyde, and valeraldehyde. It might play a role in propionate and/or acetic acid metabolisms. Also involved in the breakdown of putrescine through the oxidation of gamma-Glu-gamma-aminobutyraldehyde to gamma-Glu-gamma-aminobutyrate (gamma-Glu-GABA). (495 aa)
mutTdGTP-preferring nucleoside triphosphate pyrophosphohydrolase; Involved in the GO system responsible for removing an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine) from DNA and the nucleotide pool. 8-oxo-dGTP is inserted opposite dA and dC residues of template DNA with almost equal efficiency thus leading to A.T to G.C transversions. MutT specifically degrades 8-oxo-dGTP to the monophosphate; Belongs to the Nudix hydrolase family. (129 aa)
aldAAldehyde dehydrogenase A, NAD-linked; Acts on lactaldehyde as well as other aldehydes. (479 aa)
rplS50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface. In the 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit forming part of bridges B6 and B8. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA. The protein conformation is quite different between the 50S and 70S structures, which may be necessary for translocation. (115 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. May protect N-formylmethionyl-tRNA(fMet) from spontaneous hydrolysis. Promotes N-formylmethionyl-tRNA(fMet) binding to the 30S pre-initiation complex (PIC). Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex. Upon addition of the 50S ribosomal subunit, IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase fam [...] (890 aa)
rpsD30S ribosomal subunit protein S4; One of two assembly initiator proteins for the 30S subunit, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Plays a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. Also functions as a rho-dependent antiterminator of rRNA transcription, increasing the synthesis of rRNA under conditions of excess protein, allowing a more rapid return to homeostasis. Binds directly to RNA polymerase; Belongs to the universal ribosomal protein uS4 family. (206 aa)
rpsN30S ribosomal subunit protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (101 aa)
rplN50S ribosomal subunit protein L14; This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8. (123 aa)
trxBThioredoxin reductase, FAD/NAD(P)-binding; Thioredoxin reductase; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. (321 aa)
rpsB30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit. (241 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (14%) [HD]