node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
aceA | ackA | b4015 | b2296 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | 0.918 |
aceA | acs | b4015 | b4069 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. | 0.901 |
aceA | fumA | b4015 | b1612 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Fumarate hydratase (fumarase A), aerobic Class I; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. | 0.670 |
aceA | glcB | b4015 | b2976 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. | 0.998 |
aceA | icd | b4015 | b1136 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Isocitrate dehydrogenase, specific for NADP+; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the isocitrate and isopropylmalate dehydrogenases family. | 0.934 |
aceA | maeA | b4015 | b1479 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Malate dehydrogenase, decarboxylating, NAD-requiring; NAD-linked malate dehydrogenase (malic enzyme); Protein involved in gluconeogenesis. | 0.633 |
aceA | ppc | b4015 | b3956 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. | 0.865 |
aceA | pta | b4015 | b2297 | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. | 0.915 |
ackA | aceA | b2296 | b4015 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | 0.918 |
ackA | acs | b2296 | b4069 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. | 0.991 |
ackA | fumA | b2296 | b1612 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Fumarate hydratase (fumarase A), aerobic Class I; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. | 0.569 |
ackA | glcB | b2296 | b2976 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. | 0.739 |
ackA | icd | b2296 | b1136 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Isocitrate dehydrogenase, specific for NADP+; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the isocitrate and isopropylmalate dehydrogenases family. | 0.747 |
ackA | maeA | b2296 | b1479 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Malate dehydrogenase, decarboxylating, NAD-requiring; NAD-linked malate dehydrogenase (malic enzyme); Protein involved in gluconeogenesis. | 0.638 |
ackA | ppc | b2296 | b3956 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. | 0.837 |
ackA | pta | b2296 | b2297 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. | 0.999 |
ackA | tktA | b2296 | b2935 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. | 0.573 |
acs | aceA | b4069 | b4015 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. | 0.901 |
acs | ackA | b4069 | b2296 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | 0.991 |
acs | fumA | b4069 | b1612 | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. | Fumarate hydratase (fumarase A), aerobic Class I; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. | 0.817 |