STRINGSTRING
pheA pheA glyA glyA pdxK pdxK cysK cysK pdxH pdxH pdxY pdxY dadX dadX speF speF folD folD panB panB lpd lpd thrC thrC alr alr ilvE ilvE ilvA ilvA tpiA tpiA tdcB tdcB speC speC yggS yggS gcvT gcvT gcvH gcvH gcvP gcvP tyrA tyrA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pheAChorismate mutase and prephenate dehydratase, P-protein; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate. (386 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of allothreonine and 3-phenylserine. Also catalyzes the irreversible conversion of 5,10-m [...] (417 aa)
pdxKPyridoxal-pyridoxamine kinase/hydroxymethylpyrimidine kinase; B6-vitamer kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP). Catalyzes the phosphorylation of pyridoxine (PN), pyridoxal (PL), and pyridoxamine (PM), forming their respective 5'-phosphorylated esters, i.e. PNP, PLP and PMP. Belongs to the pyridoxine kinase family. PdxK subfamily. (283 aa)
cysKCysteine synthase A, O-acetylserine sulfhydrolase A subunit; (Microbial infection) In addition to its role in cysteine synthesis, stimulates the tRNase activity of CdiA-CT from E.coli strain 536 / UPEC; stimulation does not require O-acetylserine sulfhydrylase activity. CdiA is the toxic component of a toxin-immunity protein module, which functions as a cellular contact-dependent growth inhibition (CDI) system. CDI modules allow bacteria to communicate with and inhibit the growth of closely related neighboring bacteria in a contact-dependent fashion (experiments done in strains BW25113 [...] (323 aa)
pdxHPyridoxine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (218 aa)
pdxYPyridoxamine kinase; Pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP). Catalyzes the phosphorylation of pyridoxal to PLP in vivo, but shows very low activity compared to PdxK. Displays a low level of pyridoxine kinase activity when overexpressed, which is however not physiologically relevant. (287 aa)
dadXAlanine racemase, catabolic, PLP-binding; Isomerizes L-alanine to D-alanine which is then oxidized to pyruvate by DadA. (356 aa)
speFOrnithine decarboxylase isozyme, inducible; Protein involved in polyamine biosynthetic process; Belongs to the Orn/Lys/Arg decarboxylase class-I family. (732 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. This enzyme is specific for NADP. (288 aa)
panB3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate. (264 aa)
lpdDihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa)
thrCL-threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. To a lesser extent, is able to slowly catalyze the deamination of L-threonine into alpha-ketobutyrate and that of L-serine and 3-chloroalanine into pyruvate. Is also able to rapidly convert vinylglycine to threonine, which proves that the pyridoxal p-quinonoid of vinylglycine is an intermediate in the TS reaction. (428 aa)
alrAlanine racemase, biosynthetic, PLP-binding; Catalyzes the interconversion of L-alanine and D-alanine. Provides the D-alanine required for cell wall biosynthesis. (359 aa)
ilvEBranched-chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. (309 aa)
ilvAL-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
tdcBL-threonine dehydratase, catabolic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. TdcB also dehydrates serine t [...] (329 aa)
speCOrnithine decarboxylase, constitutive; Ornithine decarboxylase isozyme; Protein involved in polyamine biosynthetic process. (711 aa)
yggSUPF0001 family protein, PLP-binding; Pyridoxal 5'-phosphate (PLP)-binding protein, which is involved in PLP homeostasis. May have a carrier function to deliver PLP to the target enzymes or a protective function so that PLP does not inactivate essential lysines in proteins. Does not have amino acid racemase activity. (234 aa)
gcvTAminomethyltransferase, tetrahydrofolate-dependent, subunit (T protein) of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine. (364 aa)
gcvHGlycine cleavage complex lipoylprotein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (129 aa)
gcvPGlycine decarboxylase, PLP-dependent, subunit P of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (957 aa)
tyrAChorismate mutase-T and prephenate dehydrogenase; Protein involved in L-phenylalanine biosynthetic process and tyrosine biosynthetic process. (373 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (26%) [HD]