node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
aas | bioF | b2836 | b0776 | Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.601 |
aas | bioH | b2836 | b3412 | Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. | pimeloyl-ACP methyl ester carboxylesterase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain [...] | 0.627 |
aas | birA | b2836 | b3973 | Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.457 |
aas | pssA | b2836 | b2585 | Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. | Phosphatidylserine synthase; phospholipid synthesis; Protein involved in phospholipid biosynthetic process. | 0.857 |
accB | bioA | b3255 | b0774 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.412 |
accB | bioF | b3255 | b0776 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.555 |
accB | birA | b3255 | b3973 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.988 |
argD | bioC | b3359 | b0777 | Bifunctional acetylornithine aminotransferase and succinyldiaminopimelate aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.730 |
argD | birA | b3359 | b3973 | Bifunctional acetylornithine aminotransferase and succinyldiaminopimelate aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.407 |
bioA | accB | b0774 | b3255 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 0.412 |
bioA | bioC | b0774 | b0777 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.987 |
bioA | bioD | b0774 | b0778 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioA | bioF | b0774 | b0776 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioA | bioH | b0774 | b3412 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | pimeloyl-ACP methyl ester carboxylesterase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain [...] | 0.938 |
bioA | birA | b0774 | b3973 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.888 |
bioC | argD | b0777 | b3359 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Bifunctional acetylornithine aminotransferase and succinyldiaminopimelate aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. | 0.730 |
bioC | bioA | b0777 | b0774 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.987 |
bioC | bioD | b0777 | b0778 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioC | bioF | b0777 | b0776 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioC | bioH | b0777 | b3412 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | pimeloyl-ACP methyl ester carboxylesterase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain [...] | 0.998 |