STRINGSTRING
greB greB dnaK dnaK dksA dksA nusB nusB hupB hupB gyrA gyrA greA greA rpoA rpoA rpsJ rpsJ rpoZ rpoZ gyrB gyrB rho rho nusG nusG rpoB rpoB rpoC rpoC groS groS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
greBTranscript cleavage factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreB releases sequences of up to 9 nucleotides in length. (158 aa)
dnaKChaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa)
dksATranscriptional regulator of rRNA transcription; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. Binding to RNAP disrupts interaction of RNAP with DNA, inhibits formation of initiation complexes, and amplifies effects of ppGpp and the initiating NTP on rRNA transcription. Inhibits transcript elongation, exonucleolytic RNA cleavage and pyrophosphorolysis, and increases intrinsic terminat [...] (151 aa)
nusBTranscription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. The affinity of NusB for the boxA RNA sequence is significantly increased in the presence of the ribosomal protein S10. NusB may serve as a loading factor that ensures efficient entry of S10 into the transcription complexes. It also modulates the rrn boxA-mediated transcription elongation rates. (139 aa)
hupBHU, DNA-binding transcriptional regulator, beta subunit; Histone-like DNA-binding protein which is capable of wrapping DNA to stabilize it, and thus to prevent its denaturation under extreme environmental conditions. (90 aa)
gyrADNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] (875 aa)
greATranscript cleavage factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (158 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme. (329 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rpoZRNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa)
gyrBDNA gyrase, subunit B; DNA gyrase negatively supercoils closed circular double- stranded DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase 4 (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than other characterized bacterial gyrases; at compa [...] (804 aa)
rhoTranscription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. RNA-dependent NTPase which utilizes all four ribonucleoside triphosphates as substrates. (419 aa)
nusGTranscription termination factor; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcription [...] (181 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCRNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa)
groSCpn10 chaperonin GroES, small subunit of GroESL; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (97 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]