STRINGSTRING
rplM rplM thrB thrB ribF ribF araD araD araA araA araB araB araC araC panD panD panC panC rpsB rpsB tsf tsf malZ malZ pgm pgm galM galM galK galK bioA bioA bioB bioB bioF bioF bioD bioD pflB pflB serC serC pncB pncB prs prs sieB sieB uxaB uxaB rplT rplT infC infC pfkB pfkB pncA pncA eda eda amyA amyA hisG hisG hisD hisD hisB hisB hisH hisH hisA hisA hisF hisF glf glf thiD thiD folE folE fruA fruA fruK fruK atoB atoB alaA alaA ackA ackA pta pta folC folC glk glk uraA uraA glyA glyA rplS rplS smpB smpB umpG umpG serA serA fbaA fbaA tktA tktA uxaA uxaA uxaC uxaC tdcE tdcE tdcD tdcD tdcB tdcB rpsE rpsE rplN rplN rplP rplP rpsC rpsC rpsS rpsS rplB rplB rplD rplD rpsJ rpsJ rpe rpe glgP glgP kdgK kdgK xylB xylB xylA xylA ilvA ilvA glnA glnA rhaD rhaD rhaA rhaA rhaB rhaB pfkA pfkA tpiA tpiA pflD pflD murI murI rplA rplA rpoB rpoB thiC thiC pgi pgi lamB lamB rpiB rpiB fbp fbp serB serB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplM50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate. Is also able to phosphorylate the hydroxy group on gamma-carbon of L-homoserine analogs when the functional group at the alpha-position is a carboxyl, an ester, or even a hydroxymethyl group. Neither L-threonine nor L-serine are substrates of the enzyme. (310 aa)
ribFBifunctional riboflavin kinase/FAD synthetase; Catalyzes the phosphorylation of riboflavin to FMN followed by the adenylation of FMN to FAD; Belongs to the RibF family. (313 aa)
araDL-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). (231 aa)
araAL-arabinose isomerase; Catalyzes the conversion of L-arabinose to L-ribulose. (500 aa)
araBL-ribulokinase; Protein involved in carbohydrate catabolic process; Belongs to the ribulokinase family. (566 aa)
araCAra regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. (292 aa)
panDAspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine; Belongs to the PanD family. (126 aa)
panCPantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (283 aa)
rpsB30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit. (241 aa)
tsfTranslation elongation factor EF-Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. (Microbial infection) Promotes the tRNase activity of CdiA-CT from E.coli strain EC869 (CdiA-CT-EC869); required in vivo but less so in vitro. Probably loads charged tRNA onto EF-Tu, making more ternary GTP-EF-Tu-aa-tRNA complexes. The guanine nucleotide exchange factor capacity of this protein does not seem to be needed as no GTP hydrolysis occurs during tRNA cleavag [...] (283 aa)
malZMaltodextrin glucosidase; May play a role in regulating the intracellular level of maltotriose. Cleaves glucose from the reducing end of maltotriose and longer maltodextrins with a chain length of up to 7 glucose units. (604 aa)
pgmPhosphoglucomutase; This enzyme participates in both the breakdown and synthesis of glucose; Belongs to the phosphohexose mutase family. (546 aa)
galMAldose 1-epimerase; Mutarotase converts alpha-aldose to the beta-anomer. It is active on D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose. (346 aa)
galKGalactokinase; Catalyzes the transfer of the gamma-phosphate of ATP to D- galactose to form alpha-D-galactose-1-phosphate (Gal-1-P). To a lesser extent, is also able to phosphorylate 2-deoxy-D-galactose and D- galactosamine. Is not able to use D-galacturonic acid, D-talose, L- altrose, and L-glucose as substrates. (382 aa)
bioA7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (429 aa)
bioBBiotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. (346 aa)
bioF8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. (384 aa)
bioDDethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. (225 aa)
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
serC3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. Is involved in both pyridoxine and serine biosynthesis; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (362 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (400 aa)
prsPhosphoribosylpyrophosphate synthase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P). (315 aa)
sieBPhage superinfection exclusion protein. (162 aa)
uxaBAltronate oxidoreductase, NAD-dependent; Altronate oxidoreductase; Protein involved in carbohydrate catabolic process. (483 aa)
rplT50S ribosomal subunit protein L20; One of the primary rRNA binding proteins, it binds close to the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. (118 aa)
infCTranslation initiation factor IF-3; One of the essential components for the initiation of protein synthesis.IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (180 aa)
pfkB6-phosphofructokinase II; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (309 aa)
pncANicotinamidase/pyrazinamidase; Catalyzes the deamidation of nicotinamide (NAM) into nicotinate. Likely functions in the cyclical salvage pathway for production of NAD from nicotinamide. (213 aa)
edaKHG/KDPG aldolase; Involved in the degradation of glucose via the Entner- Doudoroff pathway. Catalyzes the reversible, stereospecific retro-aldol cleavage of 2-Keto-3-deoxy-6-phosphogluconate (KDPG) to pyruvate and D- glyceraldehyde-3-phosphate. In the synthetic direction, it catalyzes the addition of pyruvate to electrophilic aldehydes with si-facial selectivity. It accepts some nucleophiles other than pyruvate, including 2-oxobutanoate, phenylpyruvate, and fluorobutanoate. It has a preference for the S-configuration at C2 of the electrophile. (213 aa)
amyACytoplasmic alpha-amylase; Protein involved in carbohydrate catabolic process and polysaccharide catabolic process; Belongs to the glycosyl hydrolase 13 family. (495 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. (299 aa)
hisDBifunctional histidinal dehydrogenase/ histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (434 aa)
hisBImidazoleglycerolphosphate dehydratase and histidinol-phosphate phosphatase; Protein involved in histidine biosynthetic process. (355 aa)
hisHImidazole glycerol phosphate synthase, glutamine amidotransferase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (196 aa)
hisAN-(5'-phospho-L-ribosyl-formimino)-5-amino-1- (5'-phosphoribosyl)-4-imidazolecarboxamide isomerase; Protein involved in histidine biosynthetic process; Belongs to the HisA/HisF family. (245 aa)
hisFImidazole glycerol phosphate synthase, catalytic subunit with HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit; Belongs to the HisA/HisF family. (258 aa)
glfUDP-galactopyranose mutase, FAD/NAD(P)-binding; Catalyzes the interconversion through a 2-keto intermediate of uridine diphosphogalactopyranose (UDP-GalP) into uridine diphosphogalactofuranose (UDP-GalF); Belongs to the UDP-galactopyranose/dTDP-fucopyranose mutase family. (367 aa)
thiDHydroxy-methylpyrimidine kinase and hydroxy-phosphomethylpyrimidine kinase; Catalyzes the phosphorylation of hydroxymethylpyrimidine phosphate (HMP-P) to HMP-PP, and of HMP to HMP-P. Shows no activity with pyridoxal, pyridoxamine or pyridoxine. Belongs to the ThiD family. (266 aa)
folEGTP cyclohydrolase I; Protein involved in folic acid biosynthetic process; Belongs to the GTP cyclohydrolase I family. (222 aa)
fruAFused fructose-specific PTS enzymes: IIBcomponent/IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport. (563 aa)
fruKFructose-1-phosphate kinase; Protein involved in glycolysis; Belongs to the carbohydrate kinase PfkB family. (312 aa)
atoBacetyl-CoA acetyltransferase; Protein involved in fatty acid oxidation. (394 aa)
alaAGlutamate-pyruvate aminotransferase; Involved in the biosynthesis of alanine. (405 aa)
ackAAcetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa)
ptaPhosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa)
folCBifunctional folylpolyglutamate synthase/ dihydrofolate synthase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives. (422 aa)
glkGlucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa)
uraAUracil permease; Transport of uracil in the cell. Belongs to the xanthine/uracil permease family. Nucleobase:cation symporter-2 (NCS2) (TC 2.A.40) subfamily. (429 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of allothreonine and 3-phenylserine. Also catalyzes the irreversible conversion of 5,10-m [...] (417 aa)
rplS50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface. In the 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit forming part of bridges B6 and B8. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA. The protein conformation is quite different between the 50S and 70S structures, which may be necessary for translocation. (115 aa)
smpBtmRNA-binding trans-translation protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to tmRNA RNA (also known as SsrA or 10Sa RNA, 363 nucleotides in this organism), required for stable binding of tmRNA to ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB (Probable). tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. Able to recruit charged tmRNA to ribosomes. Does not play a role in transcription, processing or [...] (160 aa)
umpGBroad specificity 5'(3')-nucleotidase and polyphosphatase; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays [...] (253 aa)
serAD-3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate. (410 aa)
fbaAFructose-bisphosphate aldolase, class II; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (359 aa)
tktATransketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. (663 aa)
uxaAAltronate hydrolase; Catalyzes the dehydration of D-altronate. (495 aa)
uxaCUronate isomerase; Protein involved in carbohydrate catabolic process; Belongs to the metallo-dependent hydrolases superfamily. Uronate isomerase family. (470 aa)
tdcEPyruvate formate-lyase 4/2-ketobutyrate formate-lyase; Catalyzes the cleavage of 2-ketobutyrate to propionyl-CoA and formate. It can also use pyruvate as substrate. Belongs to the glycyl radical enzyme (GRE) family. PFL subfamily. (764 aa)
tdcDPropionate kinase/acetate kinase C, anaerobic; Catalyzes the conversion of propionyl phosphate and ADP to propionate and ATP. It can also use acetyl phosphate as phosphate group acceptor; Belongs to the acetokinase family. TdcD subfamily. (402 aa)
tdcBL-threonine dehydratase, catabolic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. TdcB also dehydrates serine t [...] (329 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy. Many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations). The physical location of this protein suggests it may also play a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. (167 aa)
rplN50S ribosomal subunit protein L14; This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8. (123 aa)
rplP50S ribosomal subunit protein L16; This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood. (136 aa)
rpsC30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (By similarity). Belongs to the universal ribosomal protein uS3 family. (233 aa)
rpsS30S ribosomal subunit protein S19; In the E.coli 70S ribosome in the initiation state it has been modeled to contact the 23S rRNA of the 50S subunit forming part of bridge B1a; this bridge is broken in the model with bound EF-G. The 23S rRNA contact site in bridge B1a is modeled to differ in different ribosomal states , contacting alternately S13 or S19. In the 3.5 angstroms resolved ribosome structures the contacts between L5, S13 and S19 bridge B1b are different, confirming the dynamic nature of this interaction. Bridge B1a is not visible in the crystallized ribosomes due to 23S rR [...] (92 aa)
rplB50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial. Belongs to the universal ribosomal protein uL2 family. (273 aa)
rplD50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. Forms part of the polypeptide exit tunnel. Belongs to the universal ribosomal protein uL4 family. (201 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rpeD-ribulose-5-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate. (225 aa)
glgPGlycogen phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (815 aa)
kdgK2-dehydro-3-deoxygluconokinase; Catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to produce 2-keto-3-deoxy-6-phosphogluconate (KDPG). Belongs to the carbohydrate kinase PfkB family. (309 aa)
xylBXylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. (484 aa)
xylAD-xylose isomerase; Protein involved in carbohydrate catabolic process and glucose metabolic process; Belongs to the xylose isomerase family. (440 aa)
ilvAL-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa)
glnAGlutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. (469 aa)
rhaDRhamnulose-1-phosphate aldolase; Catalyzes the reversible cleavage of L-rhamnulose-1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. Also catalyzes the dephosphorylation of phospho- serine in vitro ; Belongs to the aldolase class II family. RhaD subfamily. (274 aa)
rhaAL-rhamnose isomerase; Protein involved in carbohydrate catabolic process. (419 aa)
rhaBRhamnulokinase; Involved in the catabolism of L-rhamnose (6-deoxy-L-mannose). It could also play a role in the metabolism of some rare sugars such as L-fructose. Catalyzes the transfer of the gamma-phosphate group from ATP to the 1-hydroxyl group of L-rhamnulose to yield L-rhamnulose 1- phosphate. Uridine triphosphate (UTP), cytidine 5-triphosphate (CTP), guanosine 5-triphosphate (GTP), and thymidine triphosphate (TTP) also can act as phosphoryl donors. It can also phosphorylate L-fuculose and L-xylulose. Belongs to the rhamnulokinase family. (489 aa)
pfkA6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (320 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
pflDPutative glycine radical domain-containing pyruvate formate-lyase; Probably shows dehydratase activity. Belongs to the glycyl radical enzyme (GRE) family. (765 aa)
murIGlutamate racemase; Provides the (R)-glutamate required for cell wall biosynthesis. Belongs to the aspartate/glutamate racemases family. (285 aa)
rplA50S ribosomal subunit protein L1; One of the primary rRNA binding proteins, it binds very close to the 3'-end of the 23S rRNA. Forms part of the L1 stalk. It is often not seen in high-resolution crystal structures, but can be seen in cryo_EM and 3D reconstruction models. These indicate that the distal end of the stalk moves by approximately 20 angstroms. This stalk movement is thought to be coupled to movement of deacylated tRNA into and out of the E site, and thus to participate in tRNA translocation. Contacts the P and E site tRNAs. (234 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
thiCPhosphomethylpyrimidine synthase; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (631 aa)
pgiGlucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa)
lamBMaltose outer membrane porin (maltoporin); Involved in the transport of maltose and maltodextrins, indispensable for translocation of dextrins containing more than three glucosyl moieties. A hydrophobic path ('greasy slide') of aromatic residues serves to guide and select the sugars for transport through the channel. Also acts as a receptor for several bacteriophages including lambda. (446 aa)
rpiBRibose 5-phosphate isomerase B/allose 6-phosphate isomerase; Catalyzes the interconversion of ribulose-5-P and ribose-5-P. It probably also has activity on D-allose 6-phosphate. (149 aa)
fbpProtein involved in gluconeogenesis. (332 aa)
serB3-phosphoserine phosphatase; Catalyzes the dephosphorylation of phosphoserine (P-Ser). Also catalyzes the hydrolysis of phosphothreonine (P-Thr). Belongs to the HAD-like hydrolase superfamily. SerB family. (322 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (38%) [HD]