STRINGSTRING
nrdF nrdF rseA rseA zupT zupT nrdG nrdG nrdD nrdD mntH mntH gapA gapA sufC sufC sufD sufD acnA acnA mntR mntR apt apt
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nrdFRibonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis; Belongs to the ribonucleoside diphosphate reductase small chain family. (319 aa)
rseAAnti-sigma factor; An anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-E (RpoE). ECF sigma factors are held in an inactive form by an anti-sigma factor until released by regulated intramembrane proteolysis (RIP). RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, DegS), then within the membrane itself (site-2 protease, S2P, RseP), while cytoplasmic proteases finish degrading [...] (216 aa)
zupTZinc transporter; Mediates zinc uptake. May also transport other divalent cations such as copper and cadmium ions; Belongs to the ZIP transporter (TC 2.A.5) family. ZupT subfamily. (257 aa)
nrdGAnaerobic ribonucleoside-triphosphate reductase-activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine; Belongs to the organic radical-activating enzymes family. (154 aa)
nrdDAnaerobic ribonucleoside-triphosphate reductase; Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair. Belongs to the anaerobic ribonucleoside-triphosphate reductase family. (712 aa)
mntHManganese/divalent cation transporter; H(+)-stimulated, divalent metal cation uptake system. Involved in manganese and iron uptake. Can also transport cadmium, cobalt, zinc and to a lesser extent nickel and copper. Involved in response to reactive oxygen. (412 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa)
sufCSufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa)
sufDComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa)
acnAAconitate hydratase 1; Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. The apo form of AcnA functions as a RNA- binding regulatory protein which plays a role as a maintenance or survival enzyme during nutritional or oxidative stress. During oxidative stress inactive AcnA apo-enzyme without iron sulfur clusters binds the acnA mRNA 3' UTRs (untranslated regions), stabilizes acnA mRNA and increases AcnA synthesis, thus mediating a post- transcriptional positive autoregulatory switch. AcnA also enhances the stability of the sodA transcript. (891 aa)
mntRMn(2+)-responsive manganese regulon transcriptional regulator; In the presence of manganese, represses expression of mntH and mntS. Up-regulates expression of mntP. (155 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (183 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (16%) [HD]