Your Input: | |||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of allothreonine and 3-phenylserine. Also catalyzes the irreversible conversion of 5,10-m [...] (417 aa) | ||||
trmJ | tRNA mC32,mU32 2'-O-methyltransferase, SAM-dependent; Catalyzes the formation of 2'O-methylated cytidine (Cm32) or 2'O-methylated uridine (Um32) at position 32 in tRNA. Can also methylate adenosine or guanosine, even though these nucleosides are rare or absent at position 32 in the anticodon loop of tRNA. (246 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase 1; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate; Belongs to the GART family. (212 aa) | ||||
rlmA | 23S rRNA m(1)G745 methyltransferase, SAM-dependent; Specifically methylates the guanosine in position 745 of 23S rRNA. (269 aa) | ||||
rimO | Ribosomal protein S12 methylthiotransferase; Catalyzes the methylthiolation of the residue Asp-89 of ribosomal protein S12. (441 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. This enzyme is specific for NADP. (288 aa) | ||||
mtn | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5- deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulati [...] (232 aa) | ||||
rsmA | 16S rRNA m(6)A1518, m(6)A1519 dimethyltransferase, SAM-dependent; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. Has also a DNA glycosylase/AP lyase activity that removes C mispaired with oxidized T from DNA, and may play a role in protection of DNA against oxidative stress. (273 aa) | ||||
rsmF | 16S rRNA m(5)C1407 methyltransferase, SAM-dependent; Specifically methylates the cytosine at position 1407 (m5C1407) of 16S rRNA. (479 aa) | ||||
metH | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1227 aa) | ||||
rsmC | 16S rRNA m(2)G1207 methyltransferase, SAM-dependent; Specifically methylates the guanine in position 1207 of 16S rRNA in the 30S particle. (343 aa) | ||||
prfC | Peptide chain release factor RF-3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. (529 aa) | ||||
metF | 5,10-methylenetetrahydrofolate reductase; Methylenetetrahydrofolate reductase required to generate the methyl groups necessary for methionine synthetase to convert homocysteine to methionine. (296 aa) | ||||
metE | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. (753 aa) | ||||
rsmB | 16S rRNA m(5)C967 methyltransferase, SAM-dependent; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA. (429 aa) | ||||
rlmE | 23S rRNA U2552 2'-O-ribose methyltransferase, SAM-dependent; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (209 aa) | ||||
folP | 7,8-dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. Belongs to the DHPS family. (282 aa) | ||||
trmI | tRNA m(7)G46 methyltransferase, SAM-dependent; Catalyzes the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA; Belongs to the class I-like SAM-binding methyltransferase superfamily. TrmB family. (239 aa) | ||||
rsmE | 16S rRNA m(3)U1498 methyltransferase, SAM-dependent; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. (243 aa) | ||||
prfB | Peptide chain release factor RF-2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. Acts as a peptidyl-tRNA hydrolase. In the presence of truncated mRNA in the 70S ribosome, ArfA and RF2 interact such that the GGQ peptide hydrolysis motif of RF2 rises into the peptidyl-transferase center and releases the ribosome. Recruited by ArfA to rescue stalled ribosomes in the absence of a normal stop codon. (365 aa) | ||||
thyA | Thymidylate synthetase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. This protein also binds to its mRNA thus repressing its own translation. (264 aa) | ||||
purH | IMP cyclohydrolase and phosphoribosylaminoimidazolecarboxamide formyltransferase; Protein involved in purine nucleotide biosynthetic process and nucleobase, nucleoside and nucleotide interconversion. (529 aa) |