STRINGSTRING
fsaA fsaA talB talB ftsZ ftsZ gcd gcd lacZ lacZ lacI lacI uvrB uvrB aroA aroA ptsG ptsG icd icd pykF pykF pfkB pfkB zwf zwf pykA pykA gnd gnd glk glk talA talA tktB tktB tktA tktA murA murA pck pck rbsK rbsK yigL yigL glpK glpK gldA gldA fsaB fsaB pgi pgi sgrT sgrT
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fsaAFructose-6-phosphate aldolase 1; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone (DHA) and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize several aldehydes as acceptor compounds in vitro, and hydroxyacetone (HA) or 1-hydroxy-butan-2-one as alternative donor substrate. Is also able to catalyze the direct stereoselective self-aldol addition of glycolaldehyde to furnish D-(-)- threose, and cross-aldol reactions of glycolaldehyde to other aldehyde acceptors. Is not able to cleave fructose, fructose 1-phosphate, glucose 6-phosphate, s [...] (220 aa)
talBTransaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa)
ftsZGTP-binding tubulin-like cell division protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. Polymerization and bundle formation is enhanced by CbeA. (383 aa)
gcdGlucose dehydrogenase; GDH is probably involved in energy conservation rather than in sugar metabolism; Belongs to the bacterial PQQ dehydrogenase family. (796 aa)
lacZbeta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. (1024 aa)
lacILactose-inducible lac operon transcriptional repressor; Repressor of the lactose operon. Binds allolactose as an inducer. (360 aa)
uvrBExision nuclease of nucleotide excision repair, DNA damage recognition component; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesi [...] (673 aa)
aroA5-enolpyruvylshikimate-3-phosphate synthetase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (427 aa)
ptsGFused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa)
icdIsocitrate dehydrogenase, specific for NADP+; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (416 aa)
pykFPyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa)
pfkB6-phosphofructokinase II; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (309 aa)
zwfGlucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone; Belongs to the glucose-6-phosphate dehydrogenase family. (491 aa)
pykAPyruvate kinase II, glucose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (480 aa)
gnd6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa)
glkGlucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa)
talATransaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (316 aa)
tktBTransketolase 2, thiamine triphosphate-binding; Catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose-5-phosphate. Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (By similarity). (667 aa)
tktATransketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. (663 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N-acetylglucosamine. Target for the antibiotic fosfomycin; Belongs to the EPSP synthase family. MurA subfamily. (419 aa)
pckPhosphoenolpyruvate carboxykinase [ATP]; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (540 aa)
rbsKRibokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. Belongs to the carbohydrate kinase PfkB family. Ribokinase subfamily. (309 aa)
yigLPyridoxal phosphate phosphatase; Catalyzes Strongly the dephosphorylation of pyridoxal- phosphate (PLP) and moderately the dephosphorylation of 2-deoxyglucose 6-phosphate (2bGLU6P) and beta-glucose 6-phosphate (bGlu6P). Also hydrolyzes both purines (GMP and IMP) and pyrimidines as secondary substrates. (266 aa)
glpKGlycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate. It also catalyzes the phosphorylation of dihydroxyacetone, L-glyceraldehyde and D-glyceraldehyde. It uses only ATP; Belongs to the FGGY kinase family. (502 aa)
gldAGlycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa)
fsaBFructose-6-phosphate aldolase 2; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize hydroxyacetone as an alternative donor substrate. Is also able to catalyze the direct self-aldol addition of glycolaldehyde. Is less catalytically efficient than the isozyme FsaA. Does not display transaldolase activity. (220 aa)
pgiGlucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa)
sgrTInhibitor of glucose uptake; Acts to promote recovery from glucose-phosphate stress due to intracellular accumulation of glucose-6-phosphate caused by disruption of glycolytic flux or in the presence of (toxic) non-metabolizable glucose phosphate analogs. It may do so by inhibiting the transporter activity for glucose uptake (PtsG) as cells that overexpress this protein do not seem to import glucose although they have nearly wild- type levels of PtsG. (43 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]