node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
dmsA | dmsB | b0894 | b0895 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Dimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.999 |
dmsA | napA | b0894 | b2206 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | 0.422 |
dmsA | napB | b0894 | b2203 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | 0.667 |
dmsA | napD | b0894 | b2207 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | 0.683 |
dmsA | narL | b0894 | b1221 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Response regulator in two-component regulatory system with NarX; This protein activates the expression of the nitrate reductase (narGHJI) and formate dehydrogenase-N (fdnGHI) operons and represses the transcription of the fumarate reductase (frdABCD) operon in response to a nitrate/nitrite induction signal transmitted by either the NarX or NarQ proteins. | 0.453 |
dmsA | narX | b0894 | b1222 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Sensory histidine kinase in two-component regulatory system with NarL; Acts as a sensor for nitrate/nitrite and transduces signal of nitrate availability to the NarL protein and of both nitrate/nitrite to the NarP protein. NarX probably activates NarL and NarP by phosphorylation in the presence of nitrate. NarX also plays a negative role in controlling NarL activity, probably through dephosphorylation in the absence of nitrate. | 0.410 |
dmsB | dmsA | b0895 | b0894 | Dimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.999 |
dmsB | napA | b0895 | b2206 | Dimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | 0.546 |
napA | dmsA | b2206 | b0894 | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.422 |
napA | dmsB | b2206 | b0895 | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | Dimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.546 |
napA | napB | b2206 | b2203 | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | 0.999 |
napA | napD | b2206 | b2207 | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | 0.999 |
napA | narL | b2206 | b1221 | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | Response regulator in two-component regulatory system with NarX; This protein activates the expression of the nitrate reductase (narGHJI) and formate dehydrogenase-N (fdnGHI) operons and represses the transcription of the fumarate reductase (frdABCD) operon in response to a nitrate/nitrite induction signal transmitted by either the NarX or NarQ proteins. | 0.621 |
napB | dmsA | b2203 | b0894 | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.667 |
napB | napA | b2203 | b2206 | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | 0.999 |
napB | napD | b2203 | b2207 | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | 0.998 |
napD | dmsA | b2207 | b0894 | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.683 |
napD | napA | b2207 | b2206 | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. | 0.999 |
napD | napB | b2207 | b2203 | Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor. | Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. | 0.998 |
narL | dmsA | b1221 | b0894 | Response regulator in two-component regulatory system with NarX; This protein activates the expression of the nitrate reductase (narGHJI) and formate dehydrogenase-N (fdnGHI) operons and represses the transcription of the fumarate reductase (frdABCD) operon in response to a nitrate/nitrite induction signal transmitted by either the NarX or NarQ proteins. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.453 |