Your Input: | |||||
ackA | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa) | ||||
talB | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa) | ||||
araA | L-arabinose isomerase; Catalyzes the conversion of L-arabinose to L-ribulose. (500 aa) | ||||
fadE | Acyl coenzyme A dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for E.coli to utilize dodecanoate or oleate as the sole carbon and energy source for growth. (814 aa) | ||||
phoB | Response regulator in two-component regulatory system with PhoR; This protein is a positive regulator for the phosphate regulon. Transcription of this operon is positively regulated by PhoB and PhoR when phosphate is limited. (229 aa) | ||||
fabH | 3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for acetyl-CoA. Its substrate specificity determines the biosynthesis of straight-chain of fatty acids instead of branched-chain; Belongs to the t [...] (317 aa) | ||||
fabF | 3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Has a preference for short chain acid substrates and may function to supply the octanoic substrates for lipoic acid biosynthesis. (413 aa) | ||||
fabI | Enoyl-[acyl-carrier-protein] reductase, NADH-dependent; Catalyzes the reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Involved in the elongation cycle of fatty acid which are used in the lipid metabolism and in the biotin biosynthesis. (262 aa) | ||||
puuC | Gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase; Catalyzes the oxidation of 3-hydroxypropionaldehyde (3-HPA) to 3-hydroxypropionic acid (3-HP). It acts preferentially with NAD but can also use NADP. 3-HPA appears to be the most suitable substrate for PuuC followed by isovaleraldehyde, propionaldehyde, butyraldehyde, and valeraldehyde. It might play a role in propionate and/or acetic acid metabolisms. Also involved in the breakdown of putrescine through the oxidation of gamma-Glu-gamma-aminobutyraldehyde to gamma-Glu-gamma-aminobutyrate (gamma-Glu-GABA). (495 aa) | ||||
paaZ | oxepin-CoA hydrolase and 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase; Catalyzes the hydrolytic ring cleavage of 2-oxepin-2(3H)- ylideneacetyl-CoA (oxepin-CoA) via the open-chain aldehyde intermediate to yield 3-oxo-5,6-dehydrosuberyl-CoA. The enzyme consists of a C- terminal (R)-specific enoyl-CoA hydratase domain (formerly MaoC) that cleaves the ring and produces the highly reactive 3-oxo-5,6- dehydrosuberyl-CoA semialdehyde and an N-terminal NADP-dependent aldehyde dehydrogenase domain that oxidizes the aldehyde to 3-oxo-5,6- dehydrosuberyl-CoA. Can also use crotonyl-CoA [...] (681 aa) | ||||
pta | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
fabB | 3-oxoacyl-[acyl-carrier-protein] synthase I; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (406 aa) | ||||
fadJ | enoyl-CoA hydratase/epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long-chain fatty acids; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (714 aa) | ||||
glk | Glucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa) | ||||
talA | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (316 aa) | ||||
araE | Arabinose transporter; Uptake of arabinose across the boundary membrane with the concomitant transport of protons into the cell (symport system). (472 aa) | ||||
tktA | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. (663 aa) | ||||
glpD | Sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor. (501 aa) | ||||
xylB | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. (484 aa) | ||||
xylA | D-xylose isomerase; Protein involved in carbohydrate catabolic process and glucose metabolic process; Belongs to the xylose isomerase family. (440 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase (thiolase I); Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids. (387 aa) | ||||
fadB | Enoyl-CoA hydratase/Delta(3)-cis-Delta(2)-trans-enoyl-CoA isomerase/3-hydroxybutyryl-CoA epimerase; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (729 aa) | ||||
glnG | DNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. (469 aa) | ||||
glpK | Glycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate. It also catalyzes the phosphorylation of dihydroxyacetone, L-glyceraldehyde and D-glyceraldehyde. It uses only ATP; Belongs to the FGGY kinase family. (502 aa) | ||||
glpF | Glycerol facilitator; Transporter of glycerol across the cytoplasmic membrane, with limited permeability to water and small uncharged compounds such as polyols; Belongs to the MIP/aquaporin (TC 1.A.8) family. (281 aa) | ||||
lamB | Maltose outer membrane porin (maltoporin); Involved in the transport of maltose and maltodextrins, indispensable for translocation of dextrins containing more than three glucosyl moieties. A hydrophobic path ('greasy slide') of aromatic residues serves to guide and select the sugars for transport through the channel. Also acts as a receptor for several bacteriophages including lambda. (446 aa) |