node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
bioA | bioC | b0774 | b0777 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.987 |
bioA | bioD | b0774 | b0778 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioA | bioF | b0774 | b0776 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioC | bioA | b0777 | b0774 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.987 |
bioC | bioD | b0777 | b0778 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioC | bioF | b0777 | b0776 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioD | bioA | b0778 | b0774 | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.999 |
bioD | bioC | b0778 | b0777 | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.999 |
bioD | bioF | b0778 | b0776 | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioF | bioA | b0776 | b0774 | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.999 |
bioF | bioC | b0776 | b0777 | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.999 |
bioF | bioD | b0776 | b0778 | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
fliA | fliC | b1922 | b1923 | RNA polymerase, sigma 28 (sigma F) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes. | Flagellar filament structural protein (flagellin); Flagellin is the subunit protein which polymerizes to form the filaments of bacterial flagella. | 0.997 |
fliA | pdxJ | b1922 | b2564 | RNA polymerase, sigma 28 (sigma F) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes. | Pyridoxine 5'-phosphate synthase; Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate. | 0.890 |
fliC | fliA | b1923 | b1922 | Flagellar filament structural protein (flagellin); Flagellin is the subunit protein which polymerizes to form the filaments of bacterial flagella. | RNA polymerase, sigma 28 (sigma F) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes. | 0.997 |
pdxJ | fliA | b2564 | b1922 | Pyridoxine 5'-phosphate synthase; Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate. | RNA polymerase, sigma 28 (sigma F) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes. | 0.890 |