Your Input: | |||||
nadK | NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. It can use ATP and other nucleoside triphosphates (UTP, CTP, GTP, dATP, TTP) as phosphoryl donors, while nucleoside mono- or diphosphates and poly(P) can not. (292 aa) | ||||
gloB | Hydroxyacylglutathione hydrolase; Type II glyoxalase that catalyzes the hydrolysis of (R)-S- lactoylglutathione to (R)-lactate and glutathione. Is more efficient than the isozyme GloC, and plays a major contribution to methylglyoxal (MG) detoxification in E.coli. The two isoenzymes have additive effects and ensure maximal MG degradation. (251 aa) | ||||
poxB | Pyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa) | ||||
ptsG | Fused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa) | ||||
adhE | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa) | ||||
ldhA | Fermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa) | ||||
aldA | Aldehyde dehydrogenase A, NAD-linked; Acts on lactaldehyde as well as other aldehydes. (479 aa) | ||||
gloA | Glyoxalase I, Ni-dependent; Catalyzes the isomerization of the hemithioacetal formed spontaneously from methylglyoxal and glutathione, to S- lactoylglutathione, which is then hydrolyzed by a type II glyoxalase (GloB or GloC). Is involved in methylglyoxal (MG) detoxification (Probable). Involved in resistance to hypochlorous acid (HOCl), which is the active component of household bleach and a powerful antimicrobial during the innate immune response. (135 aa) | ||||
astD | Succinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. (492 aa) | ||||
ydjG | Methylglyoxal reductase, NADH-dependent; Catalyzes the NADH-dependent reduction of methylglyoxal (2- oxopropanal) in vitro. It is not known if this activity has physiological significance. Cannot use NADPH as a cosubstrate. Seems to play some role in intestinal colonization. (326 aa) | ||||
amyA | Cytoplasmic alpha-amylase; Protein involved in carbohydrate catabolic process and polysaccharide catabolic process; Belongs to the glycosyl hydrolase 13 family. (495 aa) | ||||
dld | D-lactate dehydrogenase, FAD-binding, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Electrons derived from D-lactate oxidation are transferred to the ubiquinone/cytochrome electron transfer chain, where they may be used to provide energy for the active transport of a variety of amino acids and sugars across the membrane. (571 aa) | ||||
ackA | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa) | ||||
glk | Glucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa) | ||||
eutE | Aldehyde oxidoreductase, ethanolamine utilization protein; May act as an acetaldehyde dehydrogenase that converts acetaldehyde into acetyl-CoA. (467 aa) | ||||
fucO | L-1,2-propanediol oxidoreductase; Protein involved in carbohydrate catabolic process and glycolate metabolic process; Belongs to the iron-containing alcohol dehydrogenase family. (382 aa) | ||||
fucA | L-fuculose-1-phosphate aldolase; Involved in the degradation of L-fucose and D-arabinose. Catalyzes the reversible cleavage of L-fuculose 1- phosphate (Fuc1P) to yield dihydroxyacetone phosphate (DHAP) and L- lactaldehyde (Ref.8, Ref.9,. Also able to catalyze the reversible cleavage of D- ribulose 1-phosphate, but FucA has a higher affinity for L-fuculose 1- phosphate and L-lactaldehyde than for D-ribulose 1-phosphate and glycolaldehyde, respectively. FucA possesses a high specificity for the dihydroxyacetone phosphate (DHAP), but accepts a great variety of different aldehydes and has [...] (215 aa) | ||||
fucP | L-fucose transporter; Mediates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell (symport system). Can also transport L-galactose and D-arabinose, but at reduced rates compared with L-fucose. Is not able to transport L-rhamnose and L-arabinose. (438 aa) | ||||
fucI | L-fucose isomerase; Converts the aldose L-fucose into the corresponding ketose L- fuculose. Is also able to convert D-arabinose into D-ribulose, but this isomerase has a higher affinity for fucose and fuculose than for arabinose and ribulose, respectively. (591 aa) | ||||
fucK | L-fuculokinase; Catalyzes the phosphorylation of L-fuculose. Can also phosphorylate, with lower efficiency, D-ribulose, D-xylulose and D- fructose. (472 aa) | ||||
galP | D-galactose transporter; Uptake of galactose across the boundary membrane with the concomitant transport of protons into the cell (symport system); Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. (464 aa) | ||||
yqhD | Aldehyde reductase, NADPH-dependent; NADP-dependent ADH activity; Belongs to the iron-containing alcohol dehydrogenase family. (387 aa) | ||||
malS | Alpha-amylase; Since only maltooligosaccharides up to a chain length of 6 glucose units are actively transported through the cytoplasmic membrane via the membrane-bound complex of three proteins, MalF, MalG, and MalK, longer maltooligosaccharides must first be degraded by the periplasmic alpha-amylase, the MalS protein; Belongs to the glycosyl hydrolase 13 family. (676 aa) | ||||
aldB | Aldehyde dehydrogenase B; Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4-hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde. (512 aa) | ||||
lldD | L-lactate dehydrogenase, FMN-linked; Catalyzes the conversion of L-lactate to pyruvate. Seems to be a primary dehydrogenase in the respiratory chain. To a lesser extent, can also oxidize DL-alpha-hydroxybutyrate, but not D-lactate. (396 aa) | ||||
rhaD | Rhamnulose-1-phosphate aldolase; Catalyzes the reversible cleavage of L-rhamnulose-1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. Also catalyzes the dephosphorylation of phospho- serine in vitro ; Belongs to the aldolase class II family. RhaD subfamily. (274 aa) | ||||
rhaA | L-rhamnose isomerase; Protein involved in carbohydrate catabolic process. (419 aa) | ||||
rhaB | Rhamnulokinase; Involved in the catabolism of L-rhamnose (6-deoxy-L-mannose). It could also play a role in the metabolism of some rare sugars such as L-fructose. Catalyzes the transfer of the gamma-phosphate group from ATP to the 1-hydroxyl group of L-rhamnulose to yield L-rhamnulose 1- phosphate. Uridine triphosphate (UTP), cytidine 5-triphosphate (CTP), guanosine 5-triphosphate (GTP), and thymidine triphosphate (TTP) also can act as phosphoryl donors. It can also phosphorylate L-fuculose and L-xylulose. Belongs to the rhamnulokinase family. (489 aa) | ||||
rhaT | L-rhamnose:proton symporter; Uptake of L-rhamnose across the boundary membrane with the concomitant transport of protons into the cell (symport system). Can also transport L-mannose and L-xylose, but at reduced rates. (344 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
gldA | Glycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa) | ||||
pgi | Glucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa) | ||||
ubiC | Chorismate pyruvate-lyase; Removes the pyruvyl group from chorismate, with concomitant aromatization of the ring, to provide 4-hydroxybenzoate (4HB) for the ubiquinone pathway. (165 aa) |