Your Input: | |||||
potD | Spermidine/putrescine ABC transporter periplasmic binding protein; Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine. Polyamine binding protein; Belongs to the bacterial solute-binding protein PotD/PotF family. (348 aa) | ||||
oppA | Oligopeptide ABC transporter periplasmic binding protein; This protein is a component of the oligopeptide permease, a binding protein-dependent transport system, it binds peptides up to five amino acids long with high affinity; Belongs to the bacterial solute-binding protein 5 family. (543 aa) | ||||
gadC | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] (511 aa) | ||||
gadB | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. (466 aa) | ||||
gdhA | Glutamate dehydrogenase, NADP-specific; Catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate and ammonia; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (447 aa) | ||||
atoD | acetyl-CoA:acetoacetyl-CoA transferase alpha subunit; Protein involved in fatty acid oxidation. (220 aa) | ||||
rpoS | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa) | ||||
sdaC | Putative serine transporter; Involved in the import of serine into the cell. May be required for phage C1 adsorption by interacting with DrcB. May also be involved in ampicillin sensitivity. (429 aa) | ||||
qseB | Quorum sensing DNA-binding response regulator in two-component regulatory system with QseC; Member of a two-component regulatory system QseB/QseC. Activates the flagella regulon by activating transcription of FlhDC. Currently it is not known whether this effect is direct or not. (219 aa) | ||||
qseC | Quorum sensing sensory histidine kinase in two-component regulatory system with QseB; Member of a two-component regulatory system QseB/QseC. Activates the flagella regulon by activating transcription of FlhDC. May activate QseB by phosphorylation. (449 aa) | ||||
glnE | Fused deadenylyltransferase/adenylyltransferase for glutamine synthetase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase inactivates GlnA by covalent transfer of an adenylyl group from ATP to 'Tyr-398' of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N- terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signa [...] (946 aa) | ||||
tdcC | L-threonine/L-serine transporter; Involved in the import of threonine and serine into the cell, with the concomitant import of a proton (symport system). Belongs to the amino acid/polyamine transporter 2 family. SdaC/TdcC subfamily. (443 aa) | ||||
pck | Phosphoenolpyruvate carboxykinase [ATP]; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (540 aa) | ||||
hdeA | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. (110 aa) | ||||
gadE | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. (175 aa) | ||||
gadA | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. (466 aa) | ||||
dppA | Dipeptide/heme ABC transporter periplasmic binding protein; Dipeptide-binding protein of a transport system that can be subject to osmotic shock. DppA is also required for peptide chemotaxis; Belongs to the bacterial solute-binding protein 5 family. (535 aa) | ||||
ibpA | Heat shock chaperone; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. (137 aa) | ||||
rpoB | RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa) | ||||
malE | Maltose transporter subunit; Part of the ABC transporter complex MalEFGK involved in maltose/maltodextrin import. Binds maltose and higher maltodextrins such as maltotriose. Belongs to the bacterial solute-binding protein 1 family. (396 aa) | ||||
tyrB | Tyrosine aminotransferase, tyrosine-repressible, PLP-dependent; Broad-specificity enzyme that catalyzes the transamination of 2-ketoisocaproate, p-hydroxyphenylpyruvate, and phenylpyruvate to yield leucine, tyrosine, and phenylalanine, respectively. In vitro, is able to catalyze the conversion of beta-methyl phenylpyruvate to the nonproteinogenic amino acid (2S,3S)-beta-methyl-phenylalanine, a building block of the antibiotic mannopeptimycin produced by Streptomyces hygroscopicus NRRL3085; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (397 aa) | ||||
appA | Phosphoanhydride phosphorylase; pH 2.5 acid phosphatase; periplasmic; Protein involved in phosphorus metabolic process and response to starvation. (432 aa) | ||||
sdhB | Succinate dehydrogenase, FeS subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (238 aa) | ||||
entE | 2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntE proccesses via a two-step adenylation-ligation reaction (bi-uni-uni-bi ping-pong mechanism). First, it catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (D [...] (536 aa) | ||||
lacZ | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. (1024 aa) |