node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cysE | cysM | b3607 | b2421 | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | Cysteine synthase B (O-acetylserine sulfhydrolase B); Two cysteine synthase enzymes are found. Both catalyze the same reaction. Cysteine synthase B can also use thiosulfate in place of sulfide to give cysteine thiosulfonate as a product. | 0.996 |
cysE | luxS | b3607 | b2687 | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | 0.441 |
cysE | metE | b3607 | b3829 | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | 0.405 |
cysE | metK | b3607 | b2942 | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. Is essential for growth. | 0.463 |
cysM | cysE | b2421 | b3607 | Cysteine synthase B (O-acetylserine sulfhydrolase B); Two cysteine synthase enzymes are found. Both catalyze the same reaction. Cysteine synthase B can also use thiosulfate in place of sulfide to give cysteine thiosulfonate as a product. | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | 0.996 |
cysM | metH | b2421 | b4019 | Cysteine synthase B (O-acetylserine sulfhydrolase B); Two cysteine synthase enzymes are found. Both catalyze the same reaction. Cysteine synthase B can also use thiosulfate in place of sulfide to give cysteine thiosulfonate as a product. | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.441 |
luxS | cysE | b2687 | b3607 | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | 0.441 |
luxS | metE | b2687 | b3829 | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | 0.967 |
luxS | metH | b2687 | b4019 | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.955 |
luxS | metK | b2687 | b2942 | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. Is essential for growth. | 0.754 |
luxS | mtn | b2687 | b0159 | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5- deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulati [...] | 0.998 |
metE | cysE | b3829 | b3607 | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | Serine acetyltransferase; Protein involved in cysteine biosynthetic process; Belongs to the transferase hexapeptide repeat family. | 0.405 |
metE | luxS | b3829 | b2687 | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | 0.967 |
metE | metH | b3829 | b4019 | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.997 |
metE | metK | b3829 | b2942 | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. Is essential for growth. | 0.996 |
metE | mtn | b3829 | b0159 | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5- deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulati [...] | 0.546 |
metH | cysM | b4019 | b2421 | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Cysteine synthase B (O-acetylserine sulfhydrolase B); Two cysteine synthase enzymes are found. Both catalyze the same reaction. Cysteine synthase B can also use thiosulfate in place of sulfide to give cysteine thiosulfonate as a product. | 0.441 |
metH | luxS | b4019 | b2687 | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. | 0.955 |
metH | metE | b4019 | b3829 | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation. | 0.997 |
metH | metK | b4019 | b2942 | homocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. Is essential for growth. | 0.983 |