STRINGSTRING
rpsM rpsM rpsE rpsE rplP rplP rplD rplD rpsJ rpsJ rpsG rpsG rpsL rpsL dnaN dnaN dnaA dnaA mnmG mnmG hemE hemE rimM rimM recR recR dnaX dnaX rpsB rpsB rpsD rpsD rpsK rpsK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpsM30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. Contacts the tRNAs in the A and P sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy. Many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations). The physical location of this protein suggests it may also play a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. (167 aa)
rplP50S ribosomal subunit protein L16; This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood. (136 aa)
rplD50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. Forms part of the polypeptide exit tunnel. Belongs to the universal ribosomal protein uL4 family. (201 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rpsG30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, where it has been shown to contact mRNA. Has been shown to contact tRNA in both the P and E sites; it probably blocks exit of the E site tRNA. (179 aa)
rpsL30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. Cryo-EM studies suggest that S12 contacts the EF-Tu bound tRNA in the A-site during codon-recognition. This contact is most likely broken as the aminoacyl-tRNA moves into the peptidyl transferase center in the 50S subunit; Belongs to the universal ribosomal protein uS12 family. (124 aa)
dnaNDNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. DNA bound in the ring is bent 22 degrees, in solution primed DNA is bound more tightly than dsDNA, suggesting the clamp binds both ss- and dsDNA. In a complex of DNA with this protein, alpha, epsilon and tau subunits however the DNA is only slightly bent. Coordinates protein traffic at the replicati [...] (366 aa)
dnaAChromosomal replication initiator protein DnaA, DNA-binding transcriptional dual regulator; Plays a key role in the initiation and regulation of chromosomal replication. Binds in an ATP-dependent fashion to the origin of replication (oriC) to initiate formation of the DNA replication initiation complex exactly once per cell cycle. Binds the DnaA box (consensus sequence 5'-TTATC[CA]A[CA]A-3'); subsequent binding of DNA polymerase III subunits leads to replisome formation. The DnaA- ATP form converts to DnaA-ADP; once converted to ADP the protein cannot initiate replication, ensuring onl [...] (467 aa)
mnmG5-methylaminomethyl-2-thiouridine modification at tRNA U34; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34. (629 aa)
hemEUroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III. (354 aa)
rimMRibosome maturation factor; One of at least 4 proteins (Era, RbfA, RimM and RsgA/YjeQ) that assist in the late assembly stage of the 30S ribosomal subunit. An accessory protein needed during the final step in assembly of the 30S ribosomal subunit, for assembly of the head region (the 16S rRNA 3' domain). It may act while Era is associated and before RimP in 30S subunit assembly. Interacts with S19. Essential for efficient processing of 16S rRNA; a deletion mutant accumulates 17S rRNA. Deletions also do not assemble the head-associated ribosomal proteins correctly. May be needed both be [...] (182 aa)
recRGap repair protein; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa)
dnaXDNA polymerase III/DNA elongation factor III, tau and gamma subunits; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3'-5' exonuclease activity. The gamma complex (gamma(3),delta,delta') is thought to load beta dimers onto DNA by binding ATP which alters the complex's conformation so it can bind beta sliding clamp dimers and open [...] (643 aa)
rpsB30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit. (241 aa)
rpsD30S ribosomal subunit protein S4; One of two assembly initiator proteins for the 30S subunit, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Plays a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. Also functions as a rho-dependent antiterminator of rRNA transcription, increasing the synthesis of rRNA under conditions of excess protein, allowing a more rapid return to homeostasis. Binds directly to RNA polymerase; Belongs to the universal ribosomal protein uS4 family. (206 aa)
rpsK30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome (By similarity); Belongs to the universal ribosomal protein uS11 family. (129 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]