Your Input: | |||||
groL | Cpn60 chaperonin GroEL, large subunit of GroESL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (548 aa) | ||||
lysC | Lysine-sensitive aspartokinase 3; Aspartokinase III, lysine sensitive; Protein involved in lysine biosynthetic process via diaminopimelate and homoserine biosynthetic process. (449 aa) | ||||
nusG | Transcription termination factor; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcription [...] (181 aa) | ||||
hslV | Peptidase component of the HslUV protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. [...] (176 aa) | ||||
hslU | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (443 aa) | ||||
dapF | Diaminopimelate epimerase; Involved in the succinylase branch of the L-lysine biosynthesis and in the biosynthesis of the pentapeptide incorporated in the peptidoglycan moiety. Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso- diaminoheptanedioate (meso-DAP). (274 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Amino acylates tRNA(Trp) with both L- and D-tryptophan, although D-tryptophan is a poor substrate ; Belongs to the class-I aminoacyl-tRNA synthetase family. (334 aa) | ||||
rpsL | 30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. Cryo-EM studies suggest that S12 contacts the EF-Tu bound tRNA in the A-site during codon-recognition. This contact is most likely broken as the aminoacyl-tRNA moves into the peptidyl transferase center in the 50S subunit; Belongs to the universal ribosomal protein uS12 family. (124 aa) | ||||
rpsG | 30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, where it has been shown to contact mRNA. Has been shown to contact tRNA in both the P and E sites; it probably blocks exit of the E site tRNA. (179 aa) | ||||
rpsJ | 30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa) | ||||
rpsS | 30S ribosomal subunit protein S19; In the E.coli 70S ribosome in the initiation state it has been modeled to contact the 23S rRNA of the 50S subunit forming part of bridge B1a; this bridge is broken in the model with bound EF-G. The 23S rRNA contact site in bridge B1a is modeled to differ in different ribosomal states , contacting alternately S13 or S19. In the 3.5 angstroms resolved ribosome structures the contacts between L5, S13 and S19 bridge B1b are different, confirming the dynamic nature of this interaction. Bridge B1a is not visible in the crystallized ribosomes due to 23S rR [...] (92 aa) | ||||
rplX | 50S ribosomal subunit protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. It is not thought to be involved in the functions of the mature 50S subunit in vitro; Belongs to the universal ribosomal protein uL24 family. (104 aa) | ||||
rplF | 50S ribosomal subunit protein L6; This protein binds directly to at least 2 domains of the 23S ribosomal RNA, thus is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. (177 aa) | ||||
rplR | 50S ribosomal subunit protein L18; This is one of the proteins that mediates the attachment of the 5S rRNA subcomplex onto the large ribosomal subunit where it forms part of the central protuberance. Binds stably to 5S rRNA; increases binding abilities of L5 in a cooperative fashion; both proteins together confer 23S rRNA binding. The 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (117 aa) | ||||
rpmD | 50S ribosomal subunit protein L30; Protein involved in structural constituent of ribosome and translation. (59 aa) | ||||
rplO | 50S ribosomal subunit protein L15; This protein binds the 5S rRNA. It is required for the late stages of subunit assembly, and is essential for 5S rRNA assembly onto the ribosome; Belongs to the universal ribosomal protein uL15 family. (144 aa) | ||||
rpsM | 30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. Contacts the tRNAs in the A and P sites. Belongs to the universal ribosomal protein uS13 family. (118 aa) | ||||
rpsI | 30S ribosomal subunit protein S9; The C-terminal tail plays a role in the affinity of the 30S P site for different tRNAs. Mutations that decrease this affinity are suppressed in the 70S ribosome. (130 aa) | ||||
rpmA | 50S ribosomal subunit protein L27; Protein involved in structural constituent of ribosome and translation. (85 aa) | ||||
rbfA | 30s ribosome binding factor; One of at least 4 proteins (Era, RbfA, RimM and RsgA/YjeQ) that assist in the late maturation steps of the functional core of the 30S subunit. Essential for efficient processing of pre-16S rRNA. Probably part of the 30S subunit prior to or during the final step in the processing of 16S free 30S ribosomal subunits. Probably interacts with the 5'- terminal helix region of 16S rRNA. Has affinity for free ribosomal 30S subunits but not for 70S ribosomes. Overexpression suppresses a cold-sensitive C23U 16S rRNA mutation. Overexpression decreases the lag time fol [...] (133 aa) | ||||
rpsU | 30S ribosomal subunit protein S21; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bS21 family. (71 aa) | ||||
prfB | Peptide chain release factor RF-2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. Acts as a peptidyl-tRNA hydrolase. In the presence of truncated mRNA in the 70S ribosome, ArfA and RF2 interact such that the GGQ peptide hydrolysis motif of RF2 rises into the peptidyl-transferase center and releases the ribosome. Recruited by ArfA to rescue stalled ribosomes in the absence of a normal stop codon. (365 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of L-alanine to tRNA(Ala) in a two- step reaction: L-alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). AlaRS also incorrectly activates the sterically smaller amino acid glycine as well as the sterically larger amino acid L-serine; generates 2-fold more mischarged Gly than Ser. These mischarged amino acids occur because the of inherent physicochemical limitations on discrimination between closely related amino acids (Ala, Gly and Ser) in the charging step. Attaches Ala to transfer-me [...] (876 aa) | ||||
luxS | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (171 aa) | ||||
rpsP | 30S ribosomal subunit protein S16; In addition to being a ribosomal protein, S16 also has a cation-dependent endonuclease activity. (82 aa) | ||||
rimM | Ribosome maturation factor; One of at least 4 proteins (Era, RbfA, RimM and RsgA/YjeQ) that assist in the late assembly stage of the 30S ribosomal subunit. An accessory protein needed during the final step in assembly of the 30S ribosomal subunit, for assembly of the head region (the 16S rRNA 3' domain). It may act while Era is associated and before RimP in 30S subunit assembly. Interacts with S19. Essential for efficient processing of 16S rRNA; a deletion mutant accumulates 17S rRNA. Deletions also do not assemble the head-associated ribosomal proteins correctly. May be needed both be [...] (182 aa) | ||||
clpB | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. (857 aa) | ||||
lepA | Back-translocating elongation factor EF4, GTPase; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner; Belongs to the TRAFAC class translation factor GTPase superfam [...] (599 aa) | ||||
rnc | RNase III; Digests double-stranded RNA formed within single-strand substrates, but not RNA-DNA hybrids. Involved in the processing of rRNA precursors, viral transcripts, some mRNAs and at least 1 tRNA (metY, a minor form of tRNA-init-Met). Cleaves the 30S primary rRNA transcript to yield the immediate precursors to the 16S and 23S rRNAs; cleavage can occur in assembled 30S, 50S and even 70S subunits and is influenced by the presence of ribosomal proteins. The E.coli enzyme does not cleave R.capsulatus rRNA precursor, although R.capsulatus will complement an E.coli disruption, showing s [...] (226 aa) | ||||
hisS | Histidine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (424 aa) | ||||
rbn | RNase BN, tRNA processing enzyme; Zinc phosphodiesterase, which has both exoribonuclease and endoribonuclease activities, depending on the nature of the substrate and of the added divalent cation, and on its 3'-terminal structure. Can process the 3' termini of both CCA-less and CCA-containing tRNA precursors. CCA-less tRNAs are cleaved endonucleolytically after the discriminator base, whereas residues following the CCA sequence can be removed exonucleolytically or endonucleolytically in CCA-containing molecules. Does not remove the CCA sequence. May also be involved in the degradation [...] (305 aa) | ||||
yeiP | Putative elongation factor; Protein involved in translation. (190 aa) | ||||
argS | Arginine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (577 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). The rate-limiting step is amino acid activation in the presence of tRNA. The 2'-OH of the acceptor base (adenine 76, A76) of tRNA(Thr) and His-309 collaborate to transfer L-Thr to the tRNA; substitution of 2'-OH of A76 with hydrogen or fluorine decreases transfer efficiency 760 and 100-fold respectively. The zinc ion in the active site discriminates against charging of the isost [...] (642 aa) | ||||
infC | Translation initiation factor IF-3; One of the essential components for the initiation of protein synthesis.IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (180 aa) | ||||
pheS | Phenylalanine tRNA synthetase, alpha-subunit; Protein involved in tRNA aminoacylation for protein translation. (327 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of L-tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr). Can also mischarge tRNA(Tyr) with D-tyrosine, leading to the formation of D-tyrosyl-tRNA(Tyr), which can be hydrolyzed by the D-aminoacyl-tRNA deacylase. In vitro, can also use the non-natural amino acid azatyrosine. (424 aa) | ||||
cspB | Qin prophage; cold shock protein. (71 aa) | ||||
prfA | Peptide chain release factor RF-1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (360 aa) | ||||
asnS | Asparagine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (466 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (430 aa) | ||||
leuS | Leucine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (860 aa) | ||||
cysS | Cysteine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (461 aa) | ||||
clpX | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] (424 aa) | ||||
clpP | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. (207 aa) | ||||
nusB | Transcription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. The affinity of NusB for the boxA RNA sequence is significantly increased in the presence of the ribosomal protein S10. NusB may serve as a loading factor that ensures efficient entry of S10 into the transcription complexes. It also modulates the rrn boxA-mediated transcription elongation rates. (139 aa) | ||||
rpsT | 30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA. (87 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (938 aa) | ||||
rsmA | 16S rRNA m(6)A1518, m(6)A1519 dimethyltransferase, SAM-dependent; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. Has also a DNA glycosylase/AP lyase activity that removes C mispaired with oxidized T from DNA, and may play a role in protection of DNA against oxidative stress. (273 aa) | ||||
degP | Serine endoprotease (protease Do), membrane-associated; DegP acts as a chaperone at low temperatures but switches to a peptidase (heat shock protein) at higher temperatures. Degrades transiently denatured and unfolded or misfolded proteins which accumulate in the periplasm following heat shock or other stress conditions. DegP is efficient with Val-Xaa and Ile-Xaa peptide bonds, suggesting a preference for beta-branched side chain amino acids. Only unfolded proteins devoid of disulfide bonds appear capable of being cleaved, thereby preventing non-specific proteolysis of folded proteins. [...] (474 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (572 aa) | ||||
dnaK | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa) | ||||
prfC | Peptide chain release factor RF-3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. (529 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner. (951 aa) | ||||
rplI | 50S ribosomal subunit protein L9; One of the primary rRNA binding proteins, it binds very close to the 3' end of the 23S rRNA; Belongs to the bacterial ribosomal protein bL9 family. (149 aa) | ||||
efp | Polyproline-specific translation elongation factor EF-P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Beta-lysylation at Lys- 34 is required for alleviation. The Pro codons and their context do not affect activity; only consecutive Pro residues (not another amino acid) are affected by EF-P. Has stimulatory effects on peptide bond formation between ribosome-bound initiator tRNA(fMet) and puromycin, [...] (188 aa) |