node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ackA | adhE | b2296 | b1241 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | 0.933 |
ackA | aldB | b2296 | b3588 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Aldehyde dehydrogenase B; Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4-hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde. | 0.954 |
ackA | astD | b2296 | b1746 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Succinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. | 0.541 |
ackA | eutE | b2296 | b2455 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Aldehyde oxidoreductase, ethanolamine utilization protein; May act as an acetaldehyde dehydrogenase that converts acetaldehyde into acetyl-CoA. | 0.577 |
ackA | eutG | b2296 | b2453 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Ethanol dehydrogenase involved in ethanolamine utilization; May act on the acetaldehyde produced from the degradation of ethanolamine; Belongs to the iron-containing alcohol dehydrogenase family. | 0.648 |
ackA | gldA | b2296 | b3945 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Glycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] | 0.483 |
ackA | glpK | b2296 | b3926 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Glycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate. It also catalyzes the phosphorylation of dihydroxyacetone, L-glyceraldehyde and D-glyceraldehyde. It uses only ATP; Belongs to the FGGY kinase family. | 0.585 |
ackA | lldD | b2296 | b3605 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | L-lactate dehydrogenase, FMN-linked; Catalyzes the conversion of L-lactate to pyruvate. Seems to be a primary dehydrogenase in the respiratory chain. To a lesser extent, can also oxidize DL-alpha-hydroxybutyrate, but not D-lactate. | 0.518 |
ackA | mgsA | b2296 | b0963 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Methylglyoxal synthase; Catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate. | 0.455 |
ackA | pta | b2296 | b2297 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. | 0.999 |
ackA | yiaY | b2296 | b3589 | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | L-threonine dehydrogenase; Putative oxidoreductase. | 0.625 |
adhE | ackA | b1241 | b2296 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. | 0.933 |
adhE | aldB | b1241 | b3588 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Aldehyde dehydrogenase B; Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4-hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde. | 0.991 |
adhE | astD | b1241 | b1746 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Succinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. | 0.918 |
adhE | eutE | b1241 | b2455 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Aldehyde oxidoreductase, ethanolamine utilization protein; May act as an acetaldehyde dehydrogenase that converts acetaldehyde into acetyl-CoA. | 0.948 |
adhE | eutG | b1241 | b2453 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Ethanol dehydrogenase involved in ethanolamine utilization; May act on the acetaldehyde produced from the degradation of ethanolamine; Belongs to the iron-containing alcohol dehydrogenase family. | 0.942 |
adhE | gldA | b1241 | b3945 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Glycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] | 0.900 |
adhE | glpK | b1241 | b3926 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Glycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate. It also catalyzes the phosphorylation of dihydroxyacetone, L-glyceraldehyde and D-glyceraldehyde. It uses only ATP; Belongs to the FGGY kinase family. | 0.562 |
adhE | lldD | b1241 | b3605 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | L-lactate dehydrogenase, FMN-linked; Catalyzes the conversion of L-lactate to pyruvate. Seems to be a primary dehydrogenase in the respiratory chain. To a lesser extent, can also oxidize DL-alpha-hydroxybutyrate, but not D-lactate. | 0.553 |
adhE | mgsA | b1241 | b0963 | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. | Methylglyoxal synthase; Catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate. | 0.654 |