STRINGSTRING
mlaD mlaD ompF ompF ompC ompC mlaA mlaA mlaB mlaB mlaC mlaC mlaE mlaE mlaF mlaF atpE atpE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mlaDOM lipid asymmetry maintenance protein; Part of the ABC transporter complex MlaFEDB, which is involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. MlaD functions in substrate binding with strong affinity for phospholipids and modulates ATP hydrolytic activity of the complex. (183 aa)
ompFOuter membrane porin 1a (Ia;b;F); Forms pores that allow passive diffusion of small molecules across the outer membrane. (Microbial infection) A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA- EC536-mediated toxicity; Belongs to the Gram-negative porin family. (362 aa)
ompCOuter membrane porin protein C; Forms pores that allow passive diffusion of small molecules across the outer membrane. (Microbial infection) A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA- EC536-mediated toxicity; Belongs to the Gram-negative porin family. (367 aa)
mlaAABC transporter maintaining OM lipid asymmetry, OM lipoprotein component; Involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. Belongs to the MlaA family. (251 aa)
mlaBABC transporter maintaining OM lipid asymmetry, cytoplasmic STAS component; Part of the ABC transporter complex MlaFEDB, which is involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. MlaB plays critical roles in both the assembly and activity of the complex. May act by modulating MlaF structure and stability. (97 aa)
mlaCABC transporter maintaining OM lipid asymmetry, periplasmic binding protein; Involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. May transfer phospholipid across the periplasmic space and deliver it to the MlaFEDB complex at the inner membrane. Belongs to the MlaC/ttg2D family. (211 aa)
mlaEABC transporter maintaining OM lipid asymmetry, inner membrane permease protein; Part of the ABC transporter complex MlaFEDB, which is involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. Probably responsible for the translocation of the substrate across the membrane. Belongs to the MlaE permease family. (260 aa)
mlaFABC transporter maintaining OM lipid asymmetry, ATP-binding protein; Part of the ABC transporter complex MlaFEDB, which is involved in a phospholipid transport pathway that maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids from the outer membrane to the inner membrane. Responsible for energy coupling to the transport system. (269 aa)
atpEF0 sector of membrane-bound ATP synthase, subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]