STRINGSTRING
ulaA ulaA rbsR rbsR galM galM mtlA mtlA sgbE sgbE yihR yihR tpiA tpiA sgbH sgbH xylB xylB cmtA cmtA nagA nagA galR galR ackA ackA fruA fruA manY manY chbC chbC bioC bioC ulaB ulaB ulaC ulaC ulaD ulaD ulaF ulaF sgcC sgcC hdfR hdfR lpd lpd araD araD waaO waaO
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ulaAL-ascorbate-specific enzyme IIC permease component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. Belongs to the UlaA family. (465 aa)
rbsRTranscriptional repressor of ribose metabolism; Transcriptional repressor for the ribose rbsDACBK operon. RbsR binds to a region of perfect dyad symmetry spanning the rbs operon transcriptional start site. The affinity for the rbs operator is reduced by addition of ribose, consistent with ribose being the inducer of the operon. (330 aa)
galMAldose 1-epimerase; Mutarotase converts alpha-aldose to the beta-anomer. It is active on D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose. (346 aa)
mtlAMannitol-specific PTS enzyme: IIA, IIB and IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in D-mannitol transport. Also able to use D-mannonic acid. (637 aa)
sgbEL-ribulose-5-phosphate 4-epimerase; Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D-xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon-carbon bond cleavage analogous to a class II aldolase reaction). May be involved in the utilization of 2,3-diketo-L-gulonate. (231 aa)
yihRPutative sulphoquinovose mutarotase; Putative aldose-1-epimerase. (308 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
sgbH3-keto-L-gulonate 6-phosphate decarboxylase; Catalyzes the decarboxylation of 3-keto-L-gulonate-6-P into L-xylulose-5-P. May be involved in the utilization of 2,3-diketo-L- gulonate. (220 aa)
xylBXylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. (484 aa)
cmtAPutative mannitol-specific PTS IIB and IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II CmtAB PTS system is involved in D-mannitol transport. (462 aa)
nagAN-acetylglucosamine-6-phosphate deacetylase; Involved in the first step in the biosynthesis of amino- sugar-nucleotides. Catalyzes the hydrolysis of the N-acetyl group of N- acetylglucosamine-6-phosphate (GlcNAc-6-P) to yield glucosamine 6- phosphate and acetate. In vitro, can also hydrolyze substrate analogs such as N-thioacetyl-D-glucosamine-6-phosphate, N-trifluoroacetyl-D- glucosamine-6-phosphate, N-acetyl-D-glucosamine-6-sulfate, N-acetyl-D- galactosamine-6-phosphate, and N-formyl-D-glucosamine-6-phosphate. (382 aa)
galRGalactose-inducible d-galactose regulon transcriptional repressor; Repressor of the galactose operon. Binds galactose as an inducer. (343 aa)
ackAAcetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa)
fruAFused fructose-specific PTS enzymes: IIBcomponent/IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport. (563 aa)
manYMannose-specific enzyme IIC component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (266 aa)
chbCN,N'-diacetylchitobiose-specific enzyme IIC component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ChbABC PTS system is involved in the transport of the chitin disaccharide N,N'-diacetylchitobiose (GlcNAc2). Also able to use N,N',N''-triacetyl chitotriose (GlcNAc3). (452 aa)
bioCmalonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. (251 aa)
ulaBL-ascorbate-specific enzyme IIB component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. (101 aa)
ulaCL-ascorbate-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. (154 aa)
ulaD3-keto-L-gulonate 6-phosphate decarboxylase; Catalyzes the decarboxylation of 3-keto-L-gulonate-6-P into L-xylulose-5-P. Is involved in the anaerobic L-ascorbate utilization. Belongs to the HPS/KGPDC family. KGPDC subfamily. (216 aa)
ulaFL-ribulose 5-phosphate 4-epimerase; Catalyzes the isomerization of L-ribulose 5-phosphate to D- xylulose 5-phosphate. Is involved in the anaerobic L-ascorbate utilization; Belongs to the aldolase class II family. AraD/FucA subfamily. (228 aa)
sgcCPutative PTS system EIIC permease component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. (437 aa)
hdfRflhDC operon transcriptional repressor; Negatively regulates the transcription of the flagellar master operon flhDC by binding to the upstream region of the operon. Belongs to the LysR transcriptional regulatory family. (279 aa)
lpdDihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa)
araDL-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). (231 aa)
waaOUDP-D-galactose:(glucosyl)lipopolysaccharide- alpha-1,3-D-galactosyltransferase; Protein involved in cell surface antigen activity, host-interacting; Belongs to the glycosyltransferase 8 family. (339 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]