node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
dmsA | fdhD | b0894 | b3895 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.477 |
dmsA | fdhF | b0894 | b4079 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | 0.494 |
dmsA | ynfE | b0894 | b1587 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.436 |
dmsA | ynfF | b0894 | b1588 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.706 |
fdhD | dmsA | b3895 | b0894 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.477 |
fdhD | fdhF | b3895 | b4079 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | 0.972 |
fdhD | iscS | b3895 | b2530 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] | 0.698 |
fdhD | ynfE | b3895 | b1587 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.546 |
fdhD | ynfF | b3895 | b1588 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.517 |
fdhF | dmsA | b4079 | b0894 | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.494 |
fdhF | fdhD | b4079 | b3895 | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.972 |
fdhF | ynfE | b4079 | b1587 | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.489 |
fdhF | ynfF | b4079 | b1588 | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.484 |
iscS | fdhD | b2530 | b3895 | Cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.698 |
ynfE | dmsA | b1587 | b0894 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.436 |
ynfE | fdhD | b1587 | b3895 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.546 |
ynfE | fdhF | b1587 | b4079 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. | 0.489 |
ynfE | ynfF | b1587 | b1588 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.993 |
ynfF | dmsA | b1588 | b0894 | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.706 |
ynfF | fdhD | b1588 | b3895 | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.517 |