Your Input: | |||||
dinQ | UV-inducible membrane toxin, DinQ-AgrB type I toxin-antitoxin system; Belongs to the DinQ family. (27 aa) | ||||
ldrA | Toxic polypeptide, small; Toxic component of a type I toxin-antitoxin (TA) system. Inhibits ATP synthesis possibly due to its insertion in the cell inner membrane, ATP levels drop over 50% 2 minutes after induction. Overexpression is toxic leading to cell death, it inhibits cell growth within 30 minutes; C-terminally tagged versions of the protein are toxic while N-terminally tagged versions are not. (35 aa) | ||||
hokB | Toxic polypeptide, small; Toxic component of a type I toxin-antitoxin (TA) system (Probable). When overexpressed kills cells within minutes; causes collapse of the transmembrane potential and arrest of respiration. Expression leads to membrane depolarization; when protein levels are high enough depolarization probably leads to lowered metabolic activity which in turn induces some cells to enter the persistent state in which they transiently survive antibiotic exposure. Its toxic effect is probably neutralized by antisense antitoxin RNA SokB, which is encoded in trans on the opposite DN [...] (49 aa) | ||||
ribF | Bifunctional riboflavin kinase/FAD synthetase; Catalyzes the phosphorylation of riboflavin to FMN followed by the adenylation of FMN to FAD; Belongs to the RibF family. (313 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (938 aa) | ||||
lspA | Prolipoprotein signal peptidase (signal peptidase II); This protein specifically catalyzes the removal of signal peptides from prolipoproteins. (164 aa) | ||||
fkpB | FKBP-type peptidyl-prolyl cis-trans isomerase (rotamase); PPIases accelerate the folding of proteins. Substrate specificity investigated with 'Suc-Ala-Xaa-Pro-Phe-4-nitroanilide' where Xaa is the amino acid tested, was found to be Phe > Leu >> Ile > Lys = Ala > Trp > His >> Gln. (149 aa) | ||||
ispH | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, 4Fe-4S protein; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. In vitro, can also hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. Belongs to the IspH family. (316 aa) | ||||
prpB | 2-methylisocitrate lyase; Involved in the catabolism of short chain fatty acids (SCFA) via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2- methylisocitrate to yield pyruvate and succinate via an alpha-carboxy- carbanion intermediate; Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (296 aa) | ||||
dxs | 1-deoxyxylulose-5-phosphate synthase, thiamine triphosphate-binding, FAD-requiring; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP). (620 aa) | ||||
rne | Endoribonuclease; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Can also process other RNA species, such as RNAI, a molecule that controls the replication of ColE1 plasmid, and the cell division inhibitor DicF- RNA. It initiates the decay of RNAs by cutting them internally near their 5'-end. It is able to remove poly(A) tails by an endonucleolytic process. Required to initiate rRNA degradation during both starvation and quality control; ac [...] (1061 aa) | ||||
ptsG | Fused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa) | ||||
gadB | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. (466 aa) | ||||
lpp | Murein lipoprotein; An outer membrane lipoprotein that controls the distance between the inner and outer membranes; adding residues to Lpp increases the width of the periplasm. The only protein known to be covalently linked to the peptidoglycan network (PGN). Also non-covalently binds the PGN. The link between the cell outer membrane and PGN contributes to the maintenance of the structural and functional integrity of the cell envelope, and maintains the correct distance between the PGN and the outer membrane. The most adundant cellular protein, there can be up to 10(6) Lpp molecules pe [...] (78 aa) | ||||
rnc | RNase III; Digests double-stranded RNA formed within single-strand substrates, but not RNA-DNA hybrids. Involved in the processing of rRNA precursors, viral transcripts, some mRNAs and at least 1 tRNA (metY, a minor form of tRNA-init-Met). Cleaves the 30S primary rRNA transcript to yield the immediate precursors to the 16S and 23S rRNAs; cleavage can occur in assembled 30S, 50S and even 70S subunits and is influenced by the presence of ribosomal proteins. The E.coli enzyme does not cleave R.capsulatus rRNA precursor, although R.capsulatus will complement an E.coli disruption, showing s [...] (226 aa) | ||||
rpoS | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa) | ||||
idi | Isopentenyl diphosphate isomerase; Catalyzes the 1,3-allylic rearrangement of the homoallylic substrate isopentenyl (IPP) to its highly electrophilic allylic isomer, dimethylallyl diphosphate (DMAPP). (182 aa) | ||||
tolC | Transport channel; Outer membrane channel, which is required for the function of several efflux systems such as AcrAB-TolC, AcrEF-TolC, EmrAB-TolC and MacAB-TolC. These systems are involved in export of antibiotics and other toxic compounds from the cell. TolC is also involved in import of colicin E1 into the cells. (493 aa) | ||||
gadE | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. (175 aa) | ||||
gadW | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. (242 aa) | ||||
gadX | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. (274 aa) | ||||
gadA | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. (466 aa) | ||||
mdtN | Membrane fusion protein of efflux pump; Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride; Belongs to the membrane fusion protein (MFP) (TC 8.A.1) family. (343 aa) | ||||
hfq | Global sRNA chaperone; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Involved in the regulation of stress responses mediated by the sigma factors RpoS, sigma-E and sigma-32. Binds with high specificity to tRNAs. Binds sRNA antitoxin RalA. In vitro, stimulates synthesis of long tails by poly(A) polymerase I. Required for RNA phage Qbeta replication. Seems to play a role in persister cell formation; upon overexpression decreases pers [...] (102 aa) |