STRINGSTRING
ybiW ybiW fsaA fsaA gldA gldA fsaB fsaB pflD pflD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ybiWPutative pyruvate formate lyase; Probably shows dehydratase activity. Belongs to the glycyl radical enzyme (GRE) family. (810 aa)
fsaAFructose-6-phosphate aldolase 1; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone (DHA) and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize several aldehydes as acceptor compounds in vitro, and hydroxyacetone (HA) or 1-hydroxy-butan-2-one as alternative donor substrate. Is also able to catalyze the direct stereoselective self-aldol addition of glycolaldehyde to furnish D-(-)- threose, and cross-aldol reactions of glycolaldehyde to other aldehyde acceptors. Is not able to cleave fructose, fructose 1-phosphate, glucose 6-phosphate, s [...] (220 aa)
gldAGlycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa)
fsaBFructose-6-phosphate aldolase 2; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize hydroxyacetone as an alternative donor substrate. Is also able to catalyze the direct self-aldol addition of glycolaldehyde. Is less catalytically efficient than the isozyme FsaA. Does not display transaldolase activity. (220 aa)
pflDPutative glycine radical domain-containing pyruvate formate-lyase; Probably shows dehydratase activity. Belongs to the glycyl radical enzyme (GRE) family. (765 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]