Your Input: | |||||
speD | S-adenosylmethionine decarboxylase; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine. (264 aa) | ||||
speE | Spermidine synthase (putrescine aminopropyltransferase); Involved in the biosynthesis of polyamines which play a significant role in the structural and functional organization in the chromoid of E.coli by compacting DNA and neutralizing negative charges. Catalyzes the irreversible transfer (ping-pong mechanism) of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine. Cadaverine (1,5-diaminopentane) and spermidine can also be used as the propylamine acceptor. (288 aa) | ||||
proB | Gamma-glutamate kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (367 aa) | ||||
proA | Gamma-glutamylphosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (417 aa) | ||||
codA | Cytosine/isoguanine deaminase; Catalyzes the hydrolytic deamination of cytosine to uracil. Is involved in the pyrimidine salvage pathway, which allows the cell to utilize cytosine for pyrimidine nucleotide synthesis. Is also able to catalyze deamination of isoguanine, a mutagenic oxidation product of adenine in DNA, and of isocytosine. To a lesser extent, also catalyzes the conversion of 5-fluorocytosine (5FC) to 5-fluorouracil (5FU); this activity allows the formation of a cytotoxic chemotherapeutic agent from a non-cytotoxic precursor. Belongs to the metallo-dependent hydrolases supe [...] (427 aa) | ||||
proC | Pyrroline-5-carboxylate reductase, NAD(P)-binding; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. Does not catalyze the reverse reaction. (269 aa) | ||||
speF | Ornithine decarboxylase isozyme, inducible; Protein involved in polyamine biosynthetic process; Belongs to the Orn/Lys/Arg decarboxylase class-I family. (732 aa) | ||||
aspC | Aspartate aminotransferase, PLP-dependent; Aspartate aminotransferase; Protein involved in cellular amino acid catabolic process and aspartate biosynthetic process. (396 aa) | ||||
putA | Delta-1-pyrroline-5-carboxylate dehydrogenase; Oxidizes proline to glutamate for use as a carbon and nitrogen source and also function as a transcriptional repressor of the put operon; In the C-terminal section; belongs to the aldehyde dehydrogenase family. (1320 aa) | ||||
puuA | Glutamate--putrescine ligase; Involved in the breakdown of putrescine via the biosynthesis of gamma-L-glutamylputrescine. It is able to use several diamines, spermidine and spermine. Absolutely essential to utilize putrescine as both nitrogen and carbon sources and to decrease the toxicity of putrescine, which can lead to inhibition of cell growth and protein synthesis; Belongs to the glutamine synthetase family. (472 aa) | ||||
puuD | Gamma-glutamyl-gamma-aminobutyrate hydrolase; Involved in the breakdown of putrescine via hydrolysis of the gamma-glutamyl linkage of gamma-glutamyl-gamma-aminobutyrate. (254 aa) | ||||
puuC | Gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase; Catalyzes the oxidation of 3-hydroxypropionaldehyde (3-HPA) to 3-hydroxypropionic acid (3-HP). It acts preferentially with NAD but can also use NADP. 3-HPA appears to be the most suitable substrate for PuuC followed by isovaleraldehyde, propionaldehyde, butyraldehyde, and valeraldehyde. It might play a role in propionate and/or acetic acid metabolisms. Also involved in the breakdown of putrescine through the oxidation of gamma-Glu-gamma-aminobutyraldehyde to gamma-Glu-gamma-aminobutyrate (gamma-Glu-GABA). (495 aa) | ||||
puuB | Gamma-glutamylputrescine oxidoreductase; Involved in the breakdown of putrescine via the oxidation of L-glutamylputrescine. (426 aa) | ||||
patD | Gamma-aminobutyraldehyde dehydrogenase; Catalyzes the oxidation 4-aminobutanal (gamma- aminobutyraldehyde) to 4-aminobutanoate (gamma-aminobutyrate or GABA). This is the second step in one of two pathways for putrescine degradation, where putrescine is converted into 4-aminobutanoate via 4-aminobutanal, which allows E.coli to grow on putrescine as the sole nitrogen source. Also functions as a 5-aminopentanal dehydrogenase in a a L-lysine degradation pathway to succinate that proceeds via cadaverine, glutarate and L-2-hydroxyglutarate. Can also oxidize n-alkyl medium-chain aldehydes, bu [...] (474 aa) | ||||
speG | Spermidine N(1)-acetyltransferase; Involved in the protection against polyamine toxicity by regulating their concentration. Catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amino groups of spermidine to yield N(1)- and N(8)-acetylspermidine. It can also use polyamines such as spermine, but not putrescine. (186 aa) | ||||
astE | Succinylglutamate desuccinylase; Transforms N(2)-succinylglutamate into succinate and glutamate; Belongs to the AspA/AstE family. Succinylglutamate desuccinylase subfamily. (322 aa) | ||||
astB | Succinylarginine dihydrolase; Catalyzes the hydrolysis of N(2)-succinylarginine into N(2)- succinylornithine, ammonia and CO(2). (447 aa) | ||||
astD | Succinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. (492 aa) | ||||
astA | Arginine succinyltransferase; Catalyzes the transfer of succinyl-CoA to arginine to produce N(2)-succinylarginine. (344 aa) | ||||
astC | Succinylornithine transaminase, PLP-dependent; Catalyzes the transamination of N(2)-succinylornithine and alpha-ketoglutarate into N(2)-succinylglutamate semialdehyde and glutamate. Can also act as an acetylornithine aminotransferase. Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. AstC subfamily. (406 aa) | ||||
speB | Agmatinase; Catalyzes the formation of putrescine from agmatine. (306 aa) | ||||
speA | Biosynthetic arginine decarboxylase, PLP-binding; Catalyzes the biosynthesis of agmatine from arginine. Belongs to the Orn/Lys/Arg decarboxylase class-II family. SpeA subfamily. (658 aa) | ||||
speC | Ornithine decarboxylase, constitutive; Ornithine decarboxylase isozyme; Protein involved in polyamine biosynthetic process. (711 aa) | ||||
patA | Putrescine:2-oxoglutaric acid aminotransferase, PLP-dependent; Catalyzes the aminotransferase reaction from putrescine to 2- oxoglutarate, leading to glutamate and 4-aminobutanal, which spontaneously cyclizes to form 1-pyrroline. This is the first step in one of two pathways for putrescine degradation, where putrescine is converted into 4- aminobutanoate (gamma-aminobutyrate or GABA) via 4-aminobutanal, which allows E.coli to grow on putrescine as the sole nitrogen source. Also functions as a cadaverine transaminase in a a L-lysine degradation pathway to succinate that proceeds via cad [...] (459 aa) | ||||
adiA | Arginine decarboxylase; ADC can be found in two forms: biodegradative and biosynthetic. The biodegradative form may play a role in regulating pH by consuming proteins; Belongs to the Orn/Lys/Arg decarboxylase class-I family. (755 aa) |