STRINGSTRING
Cpar_1409 Cpar_1409 Cpar_1412 Cpar_1412 nuoD nuoD nuoC nuoC Cpar_1872 Cpar_1872 Cpar_1508 Cpar_1508 nuoK nuoK Cpar_1300 Cpar_1300 Cpar_1299 Cpar_1299 nuoH nuoH Cpar_1303 Cpar_1303 Cpar_1302 Cpar_1302 nuoN nuoN queF queF nuoB nuoB nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Cpar_1409NADH dehydrogenase (quinone); PFAM: NADH/Ubiquinone/plastoquinone (complex I); KEGG: pvi:Cvib_1260 NADH dehydrogenase (quinone). (501 aa)
Cpar_1412NADH dehydrogenase (quinone); PFAM: NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I); KEGG: pvi:Cvib_1257 putative monovalent cation/H+ antiporter subunit A. (774 aa)
nuoDNADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (400 aa)
nuoCNADH (or F420H2) dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (166 aa)
Cpar_1872PFAM: 4Fe-4S ferredoxin iron-sulfur binding domain protein; KEGG: pvi:Cvib_1592 4Fe-4S ferredoxin, iron-sulfur binding domain protein. (162 aa)
Cpar_1508PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase; FAD dependent oxidoreductase; KEGG: cte:CT0369 NADH dehydrogenase. (430 aa)
nuoKNADH-ubiquinone oxidoreductase chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (105 aa)
Cpar_1300KEGG: cte:CT0774 NADH dehydrogenase I subunit 5; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I). (765 aa)
Cpar_1299KEGG: cte:CT0775 NADH dehydrogenase I subunit 4; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (545 aa)
nuoHNADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (359 aa)
Cpar_1303PFAM: 4Fe-4S ferredoxin iron-sulfur binding domain protein; KEGG: cte:CT0771 NADH dehydrogenase I, 23 kDa subunit. (213 aa)
Cpar_1302NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (173 aa)
nuoNProton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (511 aa)
queF7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). Belongs to the GTP cyclohydrolase I family. QueF type 1 subfamily. (116 aa)
nuoBNADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (189 aa)
nuoANADH-ubiquinone/plastoquinone oxidoreductase chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (144 aa)
Your Current Organism:
Chlorobaculum parvum
NCBI taxonomy Id: 517417
Other names: C. parvum NCIB 8327, Chlorobaculum parvum NCIB 8327, Chlorobaculum parvum str. NCIB 8327, Chlorobaculum parvum strain NCIB 8327
Server load: low (16%) [HD]