STRINGSTRING
pheS pheS pheT pheT AEF83857.1 AEF83857.1 yidC yidC AEF84728.1 AEF84728.1 rnpA rnpA rpmH rpmH ndk-2 ndk-2 ffh ffh proS proS AEF83645.1 AEF83645.1 glyS glyS alaS alaS rpmB rpmB rpmG rpmG secE secE nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC rpsU rpsU AEF87028.1 AEF87028.1 ychF ychF serS serS AEF86312.1 AEF86312.1 rluC rluC rplY rplY map map atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG atpD atpD atpC atpC AEF85707.1 AEF85707.1 efp efp rpsL rpsL rpsG rpsG tuf tuf rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rpsN rpsN rpsH rpsH rplF rplF rplR rplR rpsE rpsE rpmD rpmD rplO rplO secY secY rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA rplQ rplQ AEF85042.1 AEF85042.1 yajC yajC secD secD secF secF AEF85575.1 AEF85575.1 valS valS AEF86639.1 AEF86639.1 fusA_2 fusA_2 infC infC rpmI rpmI rplT rplT greA greA rimP rimP nusA nusA infB infB rbfA rbfA truB truB AEF83526.1 AEF83526.1 rpsO rpsO pnp pnp prfB prfB ftsY ftsY metG metG mfd mfd rpsT rpsT AEF84475.1 AEF84475.1 pth pth asnS asnS cmk cmk secA secA AEF86899.1 AEF86899.1 AEF85878.1 AEF85878.1 AEF83629.1 AEF83629.1 AEF84355.1 AEF84355.1 ileS ileS AEF85288.1 AEF85288.1 rpmE rpmE rho rho tig tig rpsB rpsB tsf tsf frr frr rplI rplI rpsR rpsR rpsF rpsF rnc rnc acpP acpP hisS hisS ndk ndk AEF85917.1 AEF85917.1 gltX gltX rplM rplM rpsI rpsI AEF86927.1 AEF86927.1 fusA_1 fusA_1 pyrG pyrG era era rpsP rpsP AEF86572.1 AEF86572.1 rimM rimM trmD trmD rplS rplS leuS leuS infA infA aspS aspS lepA lepA argS argS rplU rplU AEF86933.1 AEF86933.1 rpmA rpmA cgtA cgtA AEF86854.1 AEF86854.1 rsfS rsfS tyrS tyrS AEF84603.1 AEF84603.1 AEF86123.1 AEF86123.1 gatA gatA gatB gatB aspS-2 aspS-2 lgt lgt
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pheSphenylalanyl-tRNA synthetase alpha chain (Phenylalanine--tRNA ligase alpha chain) (PheRS); Identified by match to protein family HMM PF01409; match to protein family HMM TIGR00468; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 2 subfamily. (573 aa)
pheTphenylalanyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF03484; match to protein family HMM TIGR00471. (585 aa)
AEF83857.1Identified by match to protein family HMM PF01424. (246 aa)
yidCInner membrane protein OxaA; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (600 aa)
AEF84728.1Conserved hypothetical protein; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (72 aa)
rnpARibonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (134 aa)
rpmHRibosomal protein L34; Identified by match to protein family HMM PF00468; match to protein family HMM TIGR01030; Belongs to the bacterial ribosomal protein bL34 family. (51 aa)
ndk-2Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (147 aa)
ffhSignal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (458 aa)
proSproline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (621 aa)
AEF83645.1Putative aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B (Asp/Glu-ADT subunit B); Identified by match to protein family HMM PF02637; match to protein family HMM PF02934. (849 aa)
glySglycine--tRNA ligase; Catalyzes the attachment of glycine to tRNA(Gly). Belongs to the class-II aminoacyl-tRNA synthetase family. (462 aa)
alaSalanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (596 aa)
rpmBRibosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (63 aa)
rpmGRibosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (57 aa)
secEPreprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (59 aa)
nusGTranscription termination/antitermination factor NusG; Participates in transcription elongation, termination and antitermination. (200 aa)
rplKRibosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (143 aa)
rplARibosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (226 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (183 aa)
rplLRibosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (128 aa)
rpoBDNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1177 aa)
rpoCDNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1445 aa)
rpsURibosomal protein S21; Identified by match to protein family HMM PF01165; match to protein family HMM TIGR00030; Belongs to the bacterial ribosomal protein bS21 family. (70 aa)
AEF87028.1Class I peptide chain release factor. (141 aa)
ychFGTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (375 aa)
serSserine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (427 aa)
AEF86312.1Translocase; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (128 aa)
rluCRibosomal large subunit pseudouridine synthase family protein; Identified by match to protein family HMM PF00849. (228 aa)
rplYRibosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (214 aa)
mapMethionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (264 aa)
atpBATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (240 aa)
atpEATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (76 aa)
atpFF0F1-type ATP synthase b subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (167 aa)
atpHATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (188 aa)
atpAATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (500 aa)
atpGATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (295 aa)
atpDATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (460 aa)
atpCATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (141 aa)
AEF85707.1Threonyl/alanyl tRNA synthetase, SAD; Identified by match to protein family HMM PF02272; match to protein family HMM PF07973. (421 aa)
efpTranslation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa)
rpsLRibosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (124 aa)
rpsGRibosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
tufTranslation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa)
rpsJRibosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa)
rplCRibosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (206 aa)
rplDRibosomal protein, L4/L1 family; Forms part of the polypeptide exit tunnel. (223 aa)
rplWRibosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (95 aa)
rplBRibosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (276 aa)
rpsSRibosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa)
rplVRibosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (123 aa)
rpsCRibosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (235 aa)
rplPRibosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (141 aa)
rpmCRibosomal protein L29; Identified by match to protein family HMM PF00831; match to protein family HMM TIGR00012; Belongs to the universal ribosomal protein uL29 family. (73 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (102 aa)
rplNRibosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplXRibosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (120 aa)
rpsNRibosomal protein S14p/S29e; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa)
rpsHRibosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa)
rplF50S ribosomal protein L6 (BL10); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa)
rplRRibosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (120 aa)
rpsERibosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (175 aa)
rpmDRibosomal protein L30; Identified by match to protein family HMM PF00327; match to protein family HMM TIGR01308. (61 aa)
rplORibosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (150 aa)
secYPreprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (442 aa)
rpsMRibosomal protein S13p/S18e; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (121 aa)
rpsKRibosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (127 aa)
rpsDRibosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (211 aa)
rpoADNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (351 aa)
rplQ50S ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059. (179 aa)
AEF85042.1ABC transporter, ATP-binding protein; Identified by match to protein family HMM PF00005. (565 aa)
yajCPreprotein translocase, YajC subunit; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (141 aa)
secDProtein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (551 aa)
secFProtein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (406 aa)
AEF85575.1Hypothetical protein; Identified by glimmer; putative. (523 aa)
valSvaline--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (896 aa)
AEF86639.1Conserved hypothetical protein. (189 aa)
fusA_2Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (680 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (171 aa)
rpmIRibosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family. (66 aa)
rplTRibosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (122 aa)
greATranscription elongation factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (897 aa)
rimPConserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (169 aa)
nusATranscription termination factor NusA; Participates in both transcription termination and antitermination. (515 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (966 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (124 aa)
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (323 aa)
AEF83526.1Putative riboflavin biosynthesis protein RibF; Identified by match to protein family HMM PF01467; match to protein family HMM PF06574. (262 aa)
rpsORibosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
pnpPolyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (729 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (314 aa)
ftsYSignal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (293 aa)
metGmethionyl-tRNA synthetase (Methionine--tRNA ligase)(MetRS); Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (827 aa)
mfdTranscription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1145 aa)
rpsTRibosomal protein S20; Binds directly to 16S ribosomal RNA. (91 aa)
AEF84475.1Manganese-dependent inorganic pyrophosphatase; Identified by match to protein family HMM PF00571; match to protein family HMM PF02833; match to protein family HMM PF07085. (550 aa)
pthaminoacyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (207 aa)
asnSasparagine--tRNA ligase; Identified by match to protein family HMM PF00152; match to protein family HMM PF01336; match to protein family HMM TIGR00457. (475 aa)
cmkCytidylate kinase/ribosomal protein S1; Identified by match to protein family HMM PF00575; match to protein family HMM PF02224; match to protein family HMM TIGR00017; match to protein family HMM TIGR00717. (798 aa)
secAPreprotein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (926 aa)
AEF86899.1Inner membrane protein; Identified by match to protein family HMM PF02096. (907 aa)
AEF85878.1Inner membrane protein; Identified by match to protein family HMM PF02096; match to protein family HMM TIGR03592. (907 aa)
AEF83629.1Inner membrane protein; Identified by match to protein family HMM PF02096; match to protein family HMM TIGR03592. (897 aa)
AEF84355.1Translation elongation factor G; Identified by match to protein family HMM PF00009; match to protein family HMM PF00679; match to protein family HMM PF03764; match to protein family HMM TIGR00231. (695 aa)
ileSisoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1076 aa)
AEF85288.1Conserved domain protein. (64 aa)
rpmERibosomal protein L31; Binds the 23S rRNA. (67 aa)
rhoTranscription termination factor rho (ATP-dependenthelicase rho); Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (635 aa)
tigTrigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (453 aa)
rpsBRibosomal protein S2; Identified by match to protein family HMM PF00318; match to protein family HMM TIGR01011; Belongs to the universal ribosomal protein uS2 family. (306 aa)
tsfTranslation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (282 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (184 aa)
rplIRibosomal protein L9; Binds to the 23S rRNA. (197 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (106 aa)
rpsFRibosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (93 aa)
rncRibonuclease III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (283 aa)
acpPAcyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (78 aa)
hisShistidine--tRNA ligase; Identified by match to protein family HMM PF00587; match to protein family HMM PF03129; match to protein family HMM TIGR00442. (440 aa)
ndkNucleoside diphosphate kinase family; Identified by match to protein family HMM PF00334. (392 aa)
AEF85917.1C4 zinc finger domain protein, DksA/TraR family; Identified by match to protein family HMM PF01258. (110 aa)
gltXglutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (500 aa)
rplMRibosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsIRibosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family. (130 aa)
AEF86927.1Conserved hypothetical protein. (233 aa)
fusA_1Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (697 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (542 aa)
eraGTP-binding protein Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (308 aa)
rpsPRibosomal protein S16; Identified by match to protein family HMM PF00886; match to protein family HMM TIGR00002; Belongs to the bacterial ribosomal protein bS16 family. (82 aa)
AEF86572.1Conserved domain protein; Belongs to the UPF0109 family. (77 aa)
rimM16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (168 aa)
trmDtRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (274 aa)
rplSRibosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (139 aa)
leuSleucine--tRNA ligase; Identified by match to protein family HMM PF00133; match to protein family HMM PF08264; match to protein family HMM PF09334; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family. (829 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (74 aa)
aspSaspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (618 aa)
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (606 aa)
argSarginine--tRNA ligase; Identified by match to protein family HMM PF00750; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456. (609 aa)
rplURibosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (110 aa)
AEF86933.1Conserved hypothetical protein; Identified by match to protein family HMM PF04327. (113 aa)
rpmARibosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family. (94 aa)
cgtAObg family GTPase CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (349 aa)
AEF86854.1Conserved hypothetical protein. (406 aa)
rsfSIojap family protein; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (119 aa)
tyrStyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (416 aa)
AEF84603.1DbpA RNA binding domain protein; Identified by match to protein family HMM PF03880. (256 aa)
AEF86123.1aspartyl/glutamyl-tRNA. (126 aa)
gatAglutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, A subunit; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (505 aa)
gatBglutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (503 aa)
aspS-2aspartyl-tRNA synthetase (Aspartate--tRNA ligase)(AspRS); Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily. (436 aa)
lgtProlipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins; Belongs to the Lgt family. (353 aa)
Your Current Organism:
Treponema primitia ZAS2
NCBI taxonomy Id: 545694
Other names: T. primitia ZAS-2, Treponema primitia ZAS-2, Treponema primitia str. ZAS-2, Treponema primitia strain ZAS-2, Treponema sp. ZAS-2
Server load: low (14%) [HD]