STRINGSTRING
hisH hisH cbiA-2 cbiA-2 cbiA cbiA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hisHImidazole glycerol phosphate synthase subunit hisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (202 aa)
cbiA-2Hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolyzing); Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source. Involved in the biosynthesis of the unique nickel-containing tetrapyrrole coenzyme F430, the prosthetic group of methyl-coenzyme M reductase (MCR), which plays a key role in methanogenesis and anaerobic methane oxidation. Catalyzes the ATP- dependent amidation of the two carboxylate groups at positions a and c of Ni-sirohydrochlorin, using L-glutamine or amm [...] (481 aa)
cbiAHydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolyzing); Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source. Involved in the biosynthesis of the unique nickel-containing tetrapyrrole coenzyme F430, the prosthetic group of methyl-coenzyme M reductase (MCR), which plays a key role in methanogenesis and anaerobic methane oxidation. Catalyzes the ATP- dependent amidation of the two carboxylate groups at positions a and c of Ni-sirohydrochlorin, using L-glutamine or amm [...] (438 aa)
Your Current Organism:
Methanohalophilus mahii
NCBI taxonomy Id: 547558
Other names: M. mahii DSM 5219, Methanohalophilus mahii DSM 5219, Methanohalophilus mahii str. DSM 5219, Methanohalophilus mahii strain DSM 5219
Server load: low (28%) [HD]