STRINGSTRING
gyrB gyrB rpmE2 rpmE2 rplY rplY rpsA rpsA rpsO rpsO rpmA rpmA dnaK dnaK rpsT rpsT rplI rplI rpsG rpsG recA recA ppk ppk rpmB rpmB atpD atpD rpmH rpmH rpoB rpoB rplA rplA rpoA rpoA rpsD rpsD rpmJ rpmJ rpmD rpmD rplR rplR rplF rplF rpsQ rpsQ rplP rplP rpsS rpsS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gyrBDNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (805 aa)
rpmE250S ribosomal protein L31; Derived by automated computational analysis using gene prediction method: Protein Homology. (82 aa)
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. (94 aa)
rpsA30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (569 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpmA50S ribosomal protein L27; Involved in the peptidyltransferase reaction during translation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
dnaKMolecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (635 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (150 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
recARecombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (357 aa)
ppkPolyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family. (690 aa)
rpmB50S ribosomal protein L28; Required for 70S ribosome assembly; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
atpDATP synthase F0F1 subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (460 aa)
rpmH50S ribosomal protein L34; In Escherichia coli transcription of this gene is enhanced by polyamines; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family. (46 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (234 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (329 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa)
rpmJ50S ribosomal protein L36; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
rpmD50S ribosomal protein L30; L30 binds domain II of the 23S rRNA and the 5S rRNA; similar to eukaryotic protein L7; Derived by automated computational analysis using gene prediction method: Protein Homology. (59 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
Your Current Organism:
Pectobacterium betavasculorum
NCBI taxonomy Id: 55207
Other names: ATCC 43762, CFBP 2122, CIP 105193, DSM 18076, Erwinia carotovora subsp. betavasculorum, ICMP 4226, LMG 2464, LMG 2466, LMG:2464, LMG:2466, NCPPB 2795, P. betavasculorum, Pectobacterium carotovorum subsp. betavasculorum, UCPB 193
Server load: low (34%) [HD]