Your Input: | |||||
KFX06731.1 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (129 aa) | ||||
sdhD | Succinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa) | ||||
sdhA | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa) | ||||
sdhB | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa) | ||||
KFX07113.1 | Pyruvate formate-lyase; Formate acetyltransferase; catalyzes the formation of formate and acetyl-CoA from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (761 aa) | ||||
KFX07408.1 | Acetaldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family. (891 aa) | ||||
gabD | Succinate-semialdehyde dehydrogenase; Catalyzes the formation of succinate from succinate semialdehyde; NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology. (490 aa) | ||||
KFX07605.1 | 4-aminobutyrate aminotransferase; Catalyzes the formation of succinate semialdehyde and glutamate from 4-aminobutanoate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (421 aa) | ||||
KFX07675.1 | NADH:flavin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (963 aa) | ||||
KFX05934.1 | Fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (509 aa) | ||||
KFX05959.1 | Peroxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (299 aa) | ||||
KFX06001.1 | Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1177 aa) | ||||
KFX06084.1 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (559 aa) | ||||
KFX06085.1 | Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family. (260 aa) | ||||
frdD | Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (118 aa) | ||||
frdC | Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa) | ||||
KFX05119.1 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
KFX05120.1 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa) | ||||
KFX05236.1 | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (103 aa) | ||||
KFX05237.1 | Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (554 aa) | ||||
KFX05252.1 | Acetolactate synthase 3 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. (572 aa) | ||||
ilvH | Acetolactate synthase 3 regulatory subunit; With IlvI catalyzes the formation of 2-acetolactate from pyruvate, the small subunit is required for full activity and valine sensitivity; E.coli produces 3 isoenzymes of acetolactate synthase which differ in specificity to substrates, valine sensitivity and affinity for cofactors; also known as acetolactate synthase 3 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa) | ||||
fadJ | Multifunctional fatty acid oxidation complex subunit alpha; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (730 aa) | ||||
KFX03740.1 | Hypothetical protein; Reduces 3-sulfolactaldehyde (SLA) to 2,3-dihydroxypropane 1- sulfonate (DHPS); Belongs to the HIBADH-related family. 3-sulfolactaldehyde reductase subfamily. (298 aa) | ||||
gabD-2 | Succinate-semialdehyde dehydrogenase; Catalyzes the formation of succinate from succinate semialdehyde; NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology. (484 aa) | ||||
grcA | Autonomous glycyl radical cofactor GrcA; Acts as a radical domain for damaged PFL and possibly other radical proteins. (127 aa) | ||||
fadB | Multifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (729 aa) | ||||
ilvM | Acetolactate synthase 2 regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (86 aa) | ||||
KFX01430.1 | Acetolactate synthase catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa) |