Your Input: | |||||
KFX07881.1 | Septum formation inhibitor Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes 7- methyl-GTP (m(7)GTP). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids; Belongs to the Maf family. YceF subfamily. (194 aa) | ||||
KFX07903.1 | GNAT family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (151 aa) | ||||
KFX07917.1 | Competence-specific regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa) | ||||
KFX07924.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa) | ||||
KFX07992.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa) | ||||
KFX05787.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
KFX05790.1 | Argininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (395 aa) | ||||
KFX05791.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa) | ||||
dapD | 2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (275 aa) | ||||
KFX05843.1 | Dihydrodipicolinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (305 aa) | ||||
argA | N-acetylglutamate synthase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (441 aa) | ||||
KFX05950.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (322 aa) | ||||
cysM | Cysteine synthase; Catalyzes the formation of cysteine from 3-O-acetyl-L-serine and hydrogen sulfide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (293 aa) | ||||
KFX05961.1 | Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. YpeA subfamily. (141 aa) | ||||
KFX06084.1 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (559 aa) | ||||
KFX06104.1 | GIY-YIG nuclease; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0213 family. (103 aa) | ||||
KFX06144.1 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa) | ||||
fxsA | F exclusion of bacteriophage T7; overproduction of this protein in Escherichia coli inhibits the F plasmid-mediated exclusion of bacteriophage T7; interacts with the F plasmid-encoded PifA protein; inner membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (156 aa) | ||||
KFX06194.1 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (73 aa) | ||||
metAS | Homoserine O-succinyltransferase; Transfers a succinyl group from succinyl-CoA to L-homoserine, forming succinyl-L-homoserine; Belongs to the MetA family. (309 aa) | ||||
metH | B12-dependent methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1227 aa) | ||||
KFX05107.1 | Aspartate kinase; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; functions in amino acid biosynthesis; lysine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (458 aa) | ||||
metK | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (383 aa) | ||||
KFX05158.1 | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (664 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (387 aa) | ||||
KFX05161.1 | Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (358 aa) | ||||
rpiA | Ribose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (219 aa) | ||||
KFX05180.1 | D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (410 aa) | ||||
gpmB | Phosphoglycerate mutase; Catalyzes reactions involving the transfer of phospho groups between the three carbon atoms of phosphoglycerate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (216 aa) | ||||
thrA | Aspartate kinase; Multifunctional homotetrameric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (819 aa) | ||||
thrB | Serine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa) | ||||
KFX05196.1 | Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa) | ||||
tal | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa) | ||||
dapB | Dihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa) | ||||
ksgA | 16S rRNA methyltransferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (272 aa) | ||||
KFX05236.1 | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (103 aa) | ||||
KFX05237.1 | Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (554 aa) | ||||
leuD | Isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (200 aa) | ||||
leuC | Isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (466 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (363 aa) | ||||
leuA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (532 aa) | ||||
KFX05252.1 | Acetolactate synthase 3 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. (572 aa) | ||||
ilvH | Acetolactate synthase 3 regulatory subunit; With IlvI catalyzes the formation of 2-acetolactate from pyruvate, the small subunit is required for full activity and valine sensitivity; E.coli produces 3 isoenzymes of acetolactate synthase which differ in specificity to substrates, valine sensitivity and affinity for cofactors; also known as acetolactate synthase 3 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa) | ||||
KFX05301.1 | Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (887 aa) | ||||
KFX05303.1 | Fructose-6-phosphate aldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 3B subfamily. (221 aa) | ||||
KFX05314.1 | Dihydrodipicolinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (295 aa) | ||||
vapC | Twitching motility protein PilT; Toxic component of a toxin-antitoxin (TA) system. An RNase. Belongs to the PINc/VapC protein family. (138 aa) | ||||
KFX05354.1 | Catalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa) | ||||
lysA | Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (420 aa) | ||||
proC-2 | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (273 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (431 aa) | ||||
aroC | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa) | ||||
KFX04746.1 | Semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate-semialdehyde dehydrogenase family. (336 aa) | ||||
KFX04771.1 | Aminotransferase; Broad specificity; family IV; in Corynebacterium glutamicum this protein can use glutamate, 2-aminobutyrate, and aspartate as amino donors and pyruvate as the acceptor; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa) | ||||
KFX04789.1 | Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
KFX04816.1 | Dihydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (342 aa) | ||||
KFX04824.1 | Aminotransferase class IV; Derived by automated computational analysis using gene prediction method: Protein Homology. (305 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (367 aa) | ||||
KFX04367.1 | Dihydrodipicolinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (309 aa) | ||||
KFX04382.1 | Spore coat protein CotF; Derived by automated computational analysis using gene prediction method: Protein Homology. (503 aa) | ||||
gltA-2 | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (427 aa) | ||||
KFX04399.1 | Decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
KFX04400.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
aroK | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa) | ||||
aroB | 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (361 aa) | ||||
KFX04422.1 | Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (225 aa) | ||||
argD | Acetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (408 aa) | ||||
KFX03980.1 | Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
KFX04013.1 | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (335 aa) | ||||
KFX04015.1 | Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (167 aa) | ||||
KFX04018.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the AB hydrolase superfamily. MetX family. (359 aa) | ||||
KFX04065.1 | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (318 aa) | ||||
KFX04066.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (305 aa) | ||||
srkA | Serine/threonine protein kinase; A protein kinase that phosphorylates Ser and Thr residues. Probably acts to suppress the effects of stress linked to accumulation of reactive oxygen species. Probably involved in the extracytoplasmic stress response. (328 aa) | ||||
glnA | Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa) | ||||
argG | Argininosuccinate synthase; Catalyzes the formation of arginosuccinate from citrulline and aspartate in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (448 aa) | ||||
KFX03460.1 | Aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (283 aa) | ||||
KFX03461.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa) | ||||
KFX03462.1 | CAP-Gly protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa) | ||||
gltB | Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1486 aa) | ||||
KFX03483.1 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (472 aa) | ||||
KFX03523.1 | Septum formation inhibitor Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (197 aa) | ||||
aroQ | 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (150 aa) | ||||
KFX03549.1 | Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa) | ||||
mtnN | 5'-methylthioadenosine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5-deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulation. Belongs to the PNP/U [...] (232 aa) | ||||
proB | Gamma-glutamyl kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (367 aa) | ||||
proA | Gamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (417 aa) | ||||
luxS | S-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (171 aa) | ||||
KFX03112.1 | Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (357 aa) | ||||
tyrA | Chorismate mutase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (373 aa) | ||||
pheA | Chorismate mutase; Catalyzing the formation of prephenate from chorismate and the formation of phenylpyruvate from prephenate in phenylalanine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa) | ||||
KFX02937.1 | Serine dehydratase; Catalyzes the formation of pyruvate from serine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (455 aa) | ||||
KFX02955.1 | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (343 aa) | ||||
argH | Argininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa) | ||||
argB | Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate. (257 aa) | ||||
argC | N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa) | ||||
argE | Acetylornithine deacetylase; Catalyzes the formation of L-ornithine from N(2)-acetyl-L-ornithine in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
metE | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (754 aa) | ||||
cysE | Catalyzes the O-acetylation of serine; Derived by automated computational analysis using gene prediction method: Protein Homology. (273 aa) | ||||
KFX02591.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa) | ||||
KFX02615.1 | RpiR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa) | ||||
KFX02450.1 | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (82 aa) | ||||
asnA | Asparagine synthetase AsnA; Catalyzes the formation of asparagine from aspartate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
dapF | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (274 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (492 aa) | ||||
ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa) | ||||
ilvD | Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (616 aa) | ||||
ilvE | Branched-chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (308 aa) | ||||
ilvM | Acetolactate synthase 2 regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (86 aa) | ||||
KFX01430.1 | Acetolactate synthase catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa) | ||||
pfkA | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
KFX00658.1 | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa) | ||||
metL | Aspartate kinase; Multifunctional homodimeric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (811 aa) | ||||
serB | Phosphoserine phosphatase; Catalyzes the formation of serine from O-phosphoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (325 aa) | ||||
KFW99959.1 | Hypothetical protein; Involved in the import of queuosine (Q) precursors, required for Q precursor salvage; Belongs to the vitamin uptake transporter (VUT/ECF) (TC 2.A.88) family. Q precursor transporter subfamily. (225 aa) | ||||
KFW99883.1 | Methionine aminotransferase; Catalyzes the transfer of an amino moiety; preference for methionine followed by histidine and phenylalanine; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa) | ||||
KFW99360.1 | Dihydrodipicolinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa) | ||||
aroE | Shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (275 aa) | ||||
KFW98167.1 | Transposase; Derived by automated computational analysis using gene prediction method: Protein Homology. (327 aa) | ||||
aroL | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate. (173 aa) | ||||
KFX06527.1 | Methionine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (368 aa) | ||||
KFX06571.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (358 aa) | ||||
dapA | Dihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (292 aa) | ||||
dapE | Succinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (375 aa) | ||||
asnB | Functions in asparagine biosynthesis; converts glutamine, aspartate, ATP, and water to glutamate, asparagine, pyrophosphate and AMP; Derived by automated computational analysis using gene prediction method: Protein Homology. (554 aa) | ||||
gltA | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (428 aa) | ||||
KFX06753.1 | Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (351 aa) | ||||
gpmA | Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa) | ||||
KFX06809.1 | Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (185 aa) | ||||
KFX06837.1 | TfoX, N-terminal; Derived by automated computational analysis using gene prediction method: Protein Homology. (116 aa) | ||||
proC | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (266 aa) | ||||
KFX06931.1 | Transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (400 aa) | ||||
KFX06984.1 | Glycosyl transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa) | ||||
serC | 3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa) | ||||
aroA | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (429 aa) | ||||
hisI | phosphoribosyl-ATP pyrophosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (210 aa) | ||||
hisF | Imidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (258 aa) | ||||
hisA | 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
hisH | Imidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (196 aa) | ||||
hisB | Imidazoleglycerol-phosphate dehydratase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the histidinol- phosphatase family. (355 aa) | ||||
hisC | Histidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (357 aa) | ||||
hisD | Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (442 aa) | ||||
hisG | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. (299 aa) | ||||
KFX07157.1 | Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
KFX07171.1 | Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PHP family. (245 aa) | ||||
KFX07176.1 | Ribosomal-protein-alanine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (194 aa) | ||||
KFX07199.1 | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (480 aa) | ||||
KFX07200.1 | Transcriptional regulator; Represses the expression of the zwf, eda, glp and gap; Derived by automated computational analysis using gene prediction method: Protein Homology. (289 aa) | ||||
KFX07235.1 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa) | ||||
KFX07296.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (111 aa) | ||||
KFX07349.1 | Serine dehydratase; Catalyzes the formation of pyruvate from serine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (454 aa) | ||||
KFX07372.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa) | ||||
KFX07383.1 | Permease; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. (326 aa) | ||||
KFX07391.1 | Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (331 aa) | ||||
trpA | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (268 aa) | ||||
trpB | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (396 aa) | ||||
trpC | Indole-3-glycerol phosphate synthase; Monomeric bifunctional protein; functions in tryptophan biosynthesis pathway; phosphoribosylanthranilate is rearranged to carboxyphenylaminodeoxyribulosephosphate which is then closed to form indole-3-glycerol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (455 aa) | ||||
trpD | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (332 aa) | ||||
KFX07430.1 | Anthranilate synthase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa) | ||||
KFX07431.1 | With component II, the glutamine amidotransferase, catalyzes the formation of anthranilate from chorismate and glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (520 aa) | ||||
KFX07475.1 | Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa) | ||||
KFX07480.1 | Diaminobutyrate--2-oxoglutarate aminotransferase; Catalyzes the reversible formation of diaminobutyrate and 2-oxoglutarate from glutamate and L-aspartic beta-semialdehyde; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (460 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (315 aa) | ||||
KFX07544.1 | Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
KFX07613.1 | Serine dehydratase; Catalyzes the formation of 2-oxobutanoate from L-threonine or the formation of pyruvate from serine; Derived by automated computational analysis using gene prediction method: Protein Homology. (324 aa) | ||||
KFX07614.1 | Ornithine cyclodeaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (313 aa) | ||||
KFX07693.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
KFX07694.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (276 aa) | ||||
KFX07702.1 | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (890 aa) | ||||
KFX07772.1 | Phage protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
KFX07774.1 | Phage-like protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa) | ||||
KFX07815.1 | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa) | ||||
KFX07831.1 | Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (350 aa) |