STRINGSTRING
AFY81670.1 AFY81670.1 AFY83549.1 AFY83549.1 ndhH ndhH ndhD ndhD ndhK ndhK AFY85017.1 AFY85017.1 ndhO ndhO ndhD-3 ndhD-3 AFY84002.1 AFY84002.1 ndhC ndhC AFY82697.1 AFY82697.1 ndhE ndhE AFY80008.1 AFY80008.1 AFY82590.1 AFY82590.1 ndhI ndhI ndhA ndhA AFY82529.1 AFY82529.1 ndhD-2 ndhD-2 ndhN ndhN AFY82256.1 AFY82256.1 ndhL ndhL ndhB ndhB AFY81669.1 AFY81669.1 ndhJ ndhJ ndhM ndhM AFY83551.1 AFY83551.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AFY81670.1NAD(P)H dehydrogenase, subunit NdhF3 family; PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus; TIGRFAM: NAD(P)H dehydrogenase, subunit NdhF3 family. (618 aa)
AFY83549.1NAD(P)H dehydrogenase, subunit NdhF3 family; PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus; TIGRFAM: NAD(P)H dehydrogenase, subunit NdhF3 family. (619 aa)
ndhHNADH:ubiquinone oxidoreductase 49 kD subunit 7; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (397 aa)
ndhDNADH dehydrogenase subunit M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (542 aa)
ndhKNADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (245 aa)
AFY85017.1PFAM: Domain of unknown function (DUF1929); Glyoxal oxidase N-terminus. (651 aa)
ndhOCyanobacterial and plant NDH-1 subunit O; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (71 aa)
ndhD-3NADH dehydrogenase subunit M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (563 aa)
AFY84002.1Formate hydrogenlyase subunit 3/multisubunit Na+/H+ antiporter, MnhD subunit; PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains. (480 aa)
ndhCNADH:ubiquinone oxidoreductase subunit 3 (chain A); NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (120 aa)
AFY82697.1Putative membrane protein; PFAM: Vitamin K epoxide reductase family. (322 aa)
ndhENADH:ubiquinone oxidoreductase subunit 11 or 4L (chain K); NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (103 aa)
AFY80008.1NADH:ubiquinone oxidoreductase chain G-like protein; PFAM: 2Fe-2S iron-sulfur cluster binding domain. (79 aa)
AFY82590.1NADH:ubiquinone oxidoreductase subunit 6 (chain J); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. (205 aa)
ndhINADH-plastoquinone oxidoreductase subunit I protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (200 aa)
ndhANADH:ubiquinone oxidoreductase subunit 1 (chain H); NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (372 aa)
AFY82529.1PFAM: NADH-Ubiquinone oxidoreductase (complex I), chain 5 C-terminus; NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus; NADH-Ubiquinone/plastoquinone (complex I), various chains; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L. (689 aa)
ndhD-2NADH dehydrogenase subunit M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (527 aa)
ndhNNADH-quinone oxidoreductase cyanobacterial subunit N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (154 aa)
AFY82256.1PFAM: Protein of unknown function (DUF3252). (65 aa)
ndhLNADH dehydrogenase transmembrane subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (77 aa)
ndhBNADH dehydrogenase subunit N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (524 aa)
AFY81669.1PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M. (517 aa)
ndhJNADH:ubiquinone oxidoreductase 27 kD subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (174 aa)
ndhMCyanobacterial and plastid NDH-1 subunit M; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (113 aa)
AFY83551.1PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M. (502 aa)
Your Current Organism:
Oscillatoria acuminata
NCBI taxonomy Id: 56110
Other names: Microcoleus vaginatus KFRI M-7.1.1, O. acuminata PCC 6304, Oscillatoria acuminata PCC 6304, Oscillatoria sp. ATCC 27930, Oscillatoria sp. PCC 6304
Server load: low (18%) [HD]