STRINGSTRING
nuoH nuoH nuoI nuoI Btus_2884 Btus_2884 nuoK nuoK Btus_2886 Btus_2886
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nuoHNADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (334 aa)
nuoI4Fe-4S ferredoxin iron-sulfur binding domain protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (145 aa)
Btus_2884NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (172 aa)
nuoKNADH-ubiquinone oxidoreductase chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (114 aa)
Btus_2886TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; KEGG: gtn:GTNG_3294 NADH dehydrogenase subunit L; PFAM: NADH/Ubiquinone/plastoquinone (complex I); NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein. (632 aa)
Your Current Organism:
Kyrpidia tusciae
NCBI taxonomy Id: 562970
Other names: Bacillus tusciae DSM 2912, K. tusciae DSM 2912, Kyrpidia tusciae DSM 2912, Kyrpidia tusciae NBRC 15312, Kyrpidia tusciae str. DSM 2912, Kyrpidia tusciae strain DSM 2912
Server load: low (16%) [HD]