STRINGSTRING
hpt hpt panC panC panB panB yacE yacE guaC guaC aceE aceE aceF aceF lpdA lpdA pfs pfs ilvH ilvH ilvI ilvI dapD dapD pyrH pyrH dxr dxr proS proS argS argS gloB gloB gpt gpt acpS acpS purB purB fabI fabI lipA lipA pyrF pyrF ribA ribA trpA trpA trpC trpC trpD trpD suhB suhB gcpE gcpE hisS hisS glyA glyA bioD bioD bioB bioB bioA bioA ybhE ybhE gapA gapA sucA sucA sucB sucB gpmA gpmA pfkA pfkA tpiA tpiA aroA aroA serC serC serS serS aspS aspS pykA pykA zwf zwf pyrC pyrC fabG fabG acpP acpP tmk tmk asnS asnS pncB pncB pyrD pyrD valS valS argF argF pyrB pyrB pyrI pyrI murA murA pheA pheA aroD aroD alaS alaS metK metK glnS glnS pyrG pyrG eno eno ispF ispF ygbP ygbP cysG cysG cysI cysI cysJ cysJ gmk gmk lysS lysS lysA lysA thyA thyA leuS leuS nadD nadD asd asd pgk pgk fba fba argA argA ribH ribH thiL thiL ribD1 ribD1 ribD2 ribD2 dxs dxs adk adk folD folD cysS cysS aroE aroE argD argD trpS trpS rpe rpe aroB aroB aroK aroK deoD deoD deoB deoB pyrE pyrE dut dut cysQ cysQ purA purA mtlD mtlD pgi pgi yjeA yjeA kdtB kdtB dapF dapF ilvC ilvC ilvD ilvD atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG atpD atpD atpC atpC glmS glmS glmU glmU metE metE purH purH metF metF argE argE argC argC argB argB argG argG argH argH cysE cysE ribB ribB cysK cysK gltX gltX fliI fliI fabB fabB dapE dapE dapA dapA aroC aroC hisG hisG hisD hisD hisC hisC hisB hisB hisH hisH hisA hisA hisF hisF hisI hisI gnd gnd dcd dcd metG metG ribE ribE tyrS tyrS aroH aroH thrS thrS pheS pheS pheT pheT queA queA tgt tgt glyS glyS glyQ glyQ folA folA carB carB carA carA dapB dapB lytB lytB ileS ileS ribF ribF folC folC prsA prsA ychB ychB nadE nadE ackA ackA pta pta nrdB nrdB yfjB yfjB thrC thrC thrB thrB thrA thrA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hptHypoxanthine phosphoribosyltransferase; Acts preferentially on hypoxanthine; has very low activity towards guanine. Inactive towards xanthine (By similarity). (178 aa)
panCPantoate-beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (285 aa)
panB3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. (263 aa)
yacEdephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (217 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (By similarity). (349 aa)
aceEPyruvate dehydrogenase E1 component; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa)
aceFDihydrolipoamide acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3) (By similarity). (405 aa)
lpdADihydrolipoamide dehydrogenase; Lipoamide dehydrogenase is a component of the alpha-ketoacid dehydrogenase complexes; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (473 aa)
pfs5'-methylthioadenosine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5-deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulation. Belongs to the PNP/U [...] (232 aa)
ilvHAcetolactate synthase, small subunit. (158 aa)
ilvIAcetolactate synthase, large subunit. (571 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Belongs to the transferase hexapeptide repeat family. (274 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (242 aa)
dxr1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP). (398 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (572 aa)
argSarginyl-tRNA synthetase. (574 aa)
gloBProbable hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. (251 aa)
gptXanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (158 aa)
acpSHolo-[acyl-carrier protein] synthase; Transfers the 4'-phosphopantetheine moiety from coenzyme A to a Ser of acyl-carrier-protein; Belongs to the P-Pant transferase superfamily. AcpS family. (126 aa)
purBAdenylosuccinate lyase. (456 aa)
fabIEnoyl-[acyl-carrier-protein] reductase (NADH); Catalyzes the reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Involved in the elongation cycle of fatty acid which are used in the lipid metabolism and in the biotin biosynthesis (By similarity). (260 aa)
lipALipoyl synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (323 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (236 aa)
ribAGTP cyclohydrolase II protein; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate. (194 aa)
trpATryptophan synthase alpha chain; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (269 aa)
trpCBifunctional indole-3-glycerol phosphate synthase/phosphoribosylanthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain (By similarity). (453 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (342 aa)
suhBExtragenic suppressor protein SuhB; Belongs to the inositol monophosphatase superfamily. (266 aa)
gcpEGcpE protein; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (368 aa)
hisShistidyl-tRNA synthetase. (423 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa)
bioDDethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Belongs to the dethiobiotin synthetase family. (224 aa)
bioBBiotin synthetase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism; Belongs to the radical SAM superfamily. Biotin synthase family. (343 aa)
bioAAdenosylmethionine-8-amino-7-oxononanoate aminotransferase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (428 aa)
ybhE6-phosphogluconolactonase (YbhE); Catalyzes the hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate. (334 aa)
gapAGlyceraldehyde 3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (336 aa)
sucA2-oxoglutarate dehydrogenase E1 component; E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (909 aa)
sucB2-oxoglutarate dehydrogenase E2 component; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (420 aa)
gpmAPhosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (231 aa)
pfkA6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (427 aa)
serCPhosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (427 aa)
aspSaspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (586 aa)
pykAPyruvate kinase; Belongs to the pyruvate kinase family. (480 aa)
zwfGlucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (491 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (350 aa)
fabG3-oxoacyl-[acyl-carrier protein] reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. (244 aa)
acpPAcyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (80 aa)
tmkThymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (212 aa)
asnSasparaginyl-tRNA synthetase. (466 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (399 aa)
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (287 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (955 aa)
argFOrnithine carbamoyltransferase chain F; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. (338 aa)
pyrBAspartate carbamoyltransferase. (310 aa)
pyrIAspartate carbamoyltransferase regulatory chain; Involved in allosteric regulation of aspartate carbamoyltransferase. (154 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (416 aa)
pheAChorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate. (385 aa)
aroD3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (150 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain; Belongs to the class-II aminoacyl-tRNA synthetase family. (878 aa)
metKS-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (378 aa)
glnSglutaminyl-tRNA synthetase. (571 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (434 aa)
ispF2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase monomer (YgbB); Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (161 aa)
ygbP2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). Belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily. (237 aa)
cysGFerrochelatase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. (473 aa)
cysISulfite reductase (NADPH) hemoprotein beta-component; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (569 aa)
cysJSulfite reductase (NADPH) flavoprotein alpha-component; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component; Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the C-terminal section; belongs to the flavoprotein pyridine nucleotide cytochrome reductase family. (601 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa)
lysSlysyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (506 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (415 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa)
leuSleucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (859 aa)
nadDNicotinate-mononucleotide adenylyltransferase (YbeN); Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (214 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (371 aa)
pgkPhosphoglycerate kinase; Belongs to the phosphoglycerate kinase family. (390 aa)
fbaFructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (358 aa)
argAN-acetylglutamate synthase; Belongs to the acetyltransferase family. ArgA subfamily. (442 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin; Belongs to the DMRL synthase family. (160 aa)
thiLThiamin-monophosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (323 aa)
ribD1Riboflavin deaminase; Diaminohydroxyphosphoribosylaminopyrimidine deaminase. (141 aa)
ribD2Riboflavin reductase; 5-amino-6-(5-phosphoribosylamino)uracil reductase; Belongs to the HTP reductase family. (207 aa)
dxs1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (608 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (215 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (285 aa)
cysScysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (464 aa)
aroEShikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (273 aa)
argDBifunctional N-succinyldiaminopimelate-aminotransferase/acetylornithine transaminase protein; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (408 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (335 aa)
rpeRibulose-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate; Belongs to the ribulose-phosphate 3-epimerase family. (228 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. (363 aa)
aroKShikimate kinase I; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
deoDPurine-nucleoside phosphorylase. (234 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (407 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (154 aa)
cysQCysQ protein; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (265 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (433 aa)
mtlDD-mannitol 1-phosphate 5-dehydrogenase. (385 aa)
pgiGlucose-6-phosphate isomerase. (549 aa)
yjeAlysyl-tRNA synthetase; With EpmB is involved in the beta-lysylation step of the post-translational modification of translation elongation factor P (EF- P). Catalyzes the ATP-dependent activation of (R)-beta-lysine produced by EpmB, forming a lysyl-adenylate, from which the beta-lysyl moiety is then transferred to the epsilon-amino group of a conserved specific lysine residue in EF-P; Belongs to the class-II aminoacyl-tRNA synthetase family. EpmA subfamily. (324 aa)
kdtBLipopolysaccharide core biosynthesis protein kDatB; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (165 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (284 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (490 aa)
ilvDDihydroxyacid dehydratase; Belongs to the IlvD/Edd family. (617 aa)
atpBATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (274 aa)
atpEATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa)
atpFATP synthase B chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (161 aa)
atpHATP synthase delta chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa)
atpAATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (512 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (290 aa)
atpDATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (465 aa)
atpCATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. (138 aa)
glmSD-fructose-6-phosphate amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (609 aa)
glmUUDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (459 aa)
metE5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (758 aa)
purHIMP cyclohydrolase. (525 aa)
metF5,10-methylenetetrahydrofolate reductase; Belongs to the methylenetetrahydrofolate reductase family. (292 aa)
argEAcetylornithine deacetylase ArgE. Metallo peptidase. MEROPS family M20A; Belongs to the peptidase M20A family. ArgE subfamily. (381 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate. (257 aa)
argGArgininosuccinate synthase; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (403 aa)
argHArgininosuccinate lyase. (459 aa)
cysESerine O-acetyltransferase. (274 aa)
ribB3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate. (215 aa)
cysKCysteine synthase; Belongs to the cysteine synthase/cystathionine beta- synthase family. (315 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (467 aa)
fliIFlagellum-specific ATP synthase; Probable catalytic subunit of a protein translocase for flagellum-specific export, or a proton translocase involved in local circuits at the flagellum. May be involved in a specialized protein export pathway that proceeds without signal peptide cleavage (By similarity). (467 aa)
fabB3-oxoacyl-[acyl-carrier-protein] synthase I; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids (By similarity). (406 aa)
dapESuccinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (375 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (294 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (354 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity (By similarity). (299 aa)
hisDHistidinol-dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (435 aa)
hisCHistidinol phosphate aminotransferase; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (368 aa)
hisBImidazole glycerol-phosphate dehydratase/histidinol phosphatase; Histidinol-phosphate phosphatase; In the C-terminal section; belongs to the imidazoleglycerol-phosphate dehydratase family. (353 aa)
hisHAmidotransferase hisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF (By similarity). (196 aa)
hisAPhosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase. (246 aa)
hisFImidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit (By similarity). (258 aa)
hisIphosphoribosyl-AMP cyclohydrolase; In the C-terminal section; belongs to the PRA-PH family. (215 aa)
gnd6-phosphogluconate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa)
dcdDeoxycytidine triphosphate deaminase; Catalyzes the deamination of dCTP to dUTP. (206 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (547 aa)
ribERiboflavin synthase subunit alpha; Catalyzes the dismutation of two molecules of 6,7-dimethyl-8- ribityllumazine, resulting in the formation of riboflavin and 5-amino- 6-(D-ribitylamino)uracil. (208 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (422 aa)
aroH3-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (348 aa)
thrSthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (642 aa)
pheSphenylalanyl-tRNA synthetase, alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (329 aa)
pheTphenylalanyl-tRNA synthetase beta subunit; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (795 aa)
queAS-adenosylmethionine:tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (357 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form th [...] (370 aa)
glySglycyl-tRNA synthetase beta chain. (690 aa)
glyQglycyl-tRNA synthetase alpha subunit. (312 aa)
folADihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity). (161 aa)
carBCarbamoyl-phosphate synthase large subunit. (1079 aa)
carACarbamoyl-phosphate synthase small subunit; Belongs to the CarA family. (387 aa)
dapBDihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (269 aa)
lytBLytB protein; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. (319 aa)
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (940 aa)
ribFFMN adenylyltransferase; Catalyzes the phosphorylation of riboflavin to FMN followed by the adenylation of FMN to FAD. (313 aa)
folCDihydrofolate synthase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives. (411 aa)
prsARibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (315 aa)
ychB4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol; Belongs to the GHMP kinase family. IspE subfamily. (294 aa)
nadENAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (268 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (405 aa)
ptaPhosphate acetyltransferase; Involved in acetate metabolism; In the N-terminal section; belongs to the CobB/CobQ family. (708 aa)
nrdBRibonucleotide-diphosphate reductase beta subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity). (376 aa)
yfjBNAD kinase monomer (YfjB); Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (292 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (429 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa)
thrABifunctional aspartokinase I/homeserine dehydrogenase I; Aspartate kinase; In the C-terminal section; belongs to the homoserine dehydrogenase family. (816 aa)
Your Current Organism:
Buchnera aphidicola 5A
NCBI taxonomy Id: 563178
Other names: B. aphidicola str. 5A (Acyrthosiphon pisum), Buchnera aphidicola str. 5A (Acyrthosiphon pisum), Buchnera aphidicola strain 5A (Acyrthosiphon pisum)
Server load: low (18%) [HD]