Your Input: | |||||
AJC44519.1 | Glucokinase; Catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial glucokinase family. (340 aa) | ||||
gcvT | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (368 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (131 aa) | ||||
AJC44549.1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (460 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (504 aa) | ||||
AJC44611.1 | 3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (413 aa) | ||||
acnA | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (919 aa) | ||||
acnB | Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (863 aa) | ||||
AJC44826.1 | Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (791 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (303 aa) | ||||
AJC44859.1 | 3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (790 aa) | ||||
serC | MFS transporter; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa) | ||||
aspA | Aspartate ammonia-lyase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (477 aa) | ||||
sucA | SucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology. (941 aa) | ||||
sucB | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (404 aa) | ||||
lpdA | E3 component of 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (480 aa) | ||||
AJC45021.1 | Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (507 aa) | ||||
AJC45057.1 | 3-ketoacyl-ACP reductase; Catalyzes the conversion of 3-hydroxyacyl-CoA to 3-oxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa) | ||||
AJC47509.1 | enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (260 aa) | ||||
accA | acetyl-CoA carboxyl transferase; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (253 aa) | ||||
accD | acetyl-CoA carboxyl transferase; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (295 aa) | ||||
AJC45450.1 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (401 aa) | ||||
AJC45478.1 | 3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (687 aa) | ||||
gcvP | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (953 aa) | ||||
AJC45585.1 | Catalase; Serves to protect cells from the toxic effects of hydrogen peroxide. (704 aa) | ||||
AJC45632.1 | Citrate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (413 aa) | ||||
AJC45683.1 | Isocitrate dehydrogenase; Catalyzes the formation of 2-oxoglutarate from isocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa) | ||||
AJC45699.1 | Phosphoglycerate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. (214 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (328 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (319 aa) | ||||
tal | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (322 aa) | ||||
AJC45832.1 | Gluconolactonase; Derived by automated computational analysis using gene prediction method: Protein Homology. (299 aa) | ||||
ppc | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (904 aa) | ||||
metF | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. (280 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (422 aa) | ||||
AJC46032.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (367 aa) | ||||
lpdA-2 | E3 component of pyruvate and 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa) | ||||
AJC46188.1 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
accB | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (160 aa) | ||||
accC | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (454 aa) | ||||
AJC46251.1 | Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (222 aa) | ||||
AJC46263.1 | Catalase; Has an organic peroxide-dependent peroxidase activity. Belongs to the catalase family. (365 aa) | ||||
zwf | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (594 aa) | ||||
AJC46403.1 | Gluconokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (164 aa) | ||||
acs | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (647 aa) | ||||
AJC47633.1 | Methylmalonate-semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (504 aa) | ||||
fbp | Fructose 1,6-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FBPase class 1 family. (338 aa) | ||||
fabV | trans-2-enoyl-CoA reductase; Involved in the final reduction of the elongation cycle of fatty acid synthesis (FAS II). Catalyzes the reduction of a carbon- carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP); Belongs to the TER reductase family. (401 aa) | ||||
AJC46514.1 | 2-keto-3-deoxygluconate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (340 aa) | ||||
AJC46544.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa) | ||||
AJC46642.1 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (426 aa) | ||||
AJC46677.1 | Malate synthase; Catalyzes the aldol condensation of glyoxylate with acetyl-CoA to form malate as part of the second step of the glyoxylate bypass and an alternative to the tricarboxylic acid cycle; Derived by automated computational analysis using gene prediction method: Protein Homology. (547 aa) | ||||
AJC46678.1 | Isocitrate lyase; Catalyzes the reversible formation of glyoxylate and succinate from isocitrate; glyoxylate bypass pathway; Derived by automated computational analysis using gene prediction method: Protein Homology. (431 aa) | ||||
AJC46762.1 | Catalase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the catalase family. (507 aa) | ||||
AJC46768.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa) | ||||
AJC46806.1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (319 aa) | ||||
AJC46854.1 | 3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (328 aa) | ||||
AJC46965.1 | Branched-chain alpha-keto acid dehydrogenase subunit E2; Derived by automated computational analysis using gene prediction method: Protein Homology. (479 aa) | ||||
AJC46967.1 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (359 aa) | ||||
pdhA | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (362 aa) | ||||
AJC46992.1 | Isocitrate dehydrogenase; NADP-specific, catalyzes the formation of 2-oxoglutarate from isocitrate or oxalosuccinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family. (743 aa) | ||||
AJC47120.1 | Catalyzes the formation of S-formylglutathione from S-(hydroxymethyl)glutathione; also catalyzes the formation of aldehyde or ketone from alcohols; Derived by automated computational analysis using gene prediction method: Protein Homology. (369 aa) | ||||
gnd | 6-phosphogluconate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
AJC47187.1 | Catalyzes the formation of S-formylglutathione from S-(hydroxymethyl)glutathione; also catalyzes the formation of aldehyde or ketone from alcohols; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (369 aa) | ||||
gfa | Glutathione-dependent formaldehyde-activating protein; Catalyzes the condensation of formaldehyde and glutathione to S-hydroxymethylglutathione; Belongs to the Gfa family. (190 aa) | ||||
fghA | S-formylglutathione hydrolase; Serine hydrolase involved in the detoxification of formaldehyde. (276 aa) | ||||
AJC47211.1 | 3-ketoacyl-ACP reductase; Catalyzes the formation of 3-hydroxybutyryl-CoA from acetoacetyl-CoA in polyhydroxyalkanoate synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa) | ||||
AJC47224.1 | Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (763 aa) | ||||
AJC47246.1 | Threonine dehydratase; Catalyzes the formation of 2-oxobutanoate from L-threonine; Derived by automated computational analysis using gene prediction method: Protein Homology. (366 aa) | ||||
pfp | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions. (418 aa) | ||||
rpiA | Ribose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (215 aa) | ||||
gltA | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (429 aa) | ||||
tkt | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (666 aa) | ||||
gap | Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (333 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (391 aa) | ||||
pyk | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (488 aa) | ||||
AJC47358.1 | Fructose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class I fructose-bisphosphate aldolase family. (334 aa) | ||||
cysK | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (319 aa) | ||||
AJC47399.1 | Phosphoglycerate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa) | ||||
sucC | succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (389 aa) | ||||
sucD | succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (291 aa) |