Your Input: | |||||
rpmH | Ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
glyS | Glycyl-tRNA synthetase beta chain. (688 aa) | ||||
glyQ | Glycyl-tRNA synthetase alpha chain. (304 aa) | ||||
engB | Probable GTP-binding protein engB; Necessary for normal cell division and for the maintenance of normal septation; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngB GTPase family. (269 aa) | ||||
rph | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. (238 aa) | ||||
rpmB | Ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (78 aa) | ||||
rpmG | Ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
rnr | Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (833 aa) | ||||
rlmB | 23S rRNA (guanosine-2'-O-)-methyltransferase rlmB; Specifically methylates the ribose of guanosine 2251 in 23S rRNA. (246 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (137 aa) | ||||
rpsR | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa) | ||||
rplI | Ribosomal protein L9; Binds to the 23S rRNA. (150 aa) | ||||
rluA | Ribosomal large subunit pseudouridine synthase A; Function of homologous gene experimentally demonstrated in another organism; enzyme. (244 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
rpmA | 50S ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (85 aa) | ||||
obg | GTP1/Obg family protein; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (390 aa) | ||||
rsmA | Dimethyladenosine transferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (271 aa) | ||||
rpsU | Ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (71 aa) | ||||
rplM | Ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa) | ||||
rpsI | Ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (130 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (303 aa) | ||||
lysS | Lysyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (510 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (86 aa) | ||||
ileS | Isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (952 aa) | ||||
VS_0557 | Putative sigma-54 modulation protein. (111 aa) | ||||
VS_0560 | Ribosomal large subunit pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (324 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (144 aa) | ||||
hisS | Histidyl-tRNA synthetase. (422 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (184 aa) | ||||
rsfS | Hypothetical protein; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (105 aa) | ||||
leuS | Leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (858 aa) | ||||
gltX | Glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (475 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (686 aa) | ||||
rne | Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. (1041 aa) | ||||
VS_1019 | Hypothetical protein. (175 aa) | ||||
rpmF | 50S ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (56 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
aspS | Aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (592 aa) | ||||
VS_1203 | Putative ATP-dependent helicase. (794 aa) | ||||
thrS | Threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (655 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (156 aa) | ||||
rpmI | 50S ribosomal protein L35; Function of homologous gene experimentally demonstrated in another organism; structure; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
rplT | 50S ribosomal subunit protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (117 aa) | ||||
VS_1235 | Putative ABC-type transport system, ATPase component; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative transporter. (524 aa) | ||||
rsmF | NOL1/NOP2/sun family protein; Specifically methylates the cytosine at position 1407 (m5C1407) of 16S rRNA. (473 aa) | ||||
rmf | Ribosome modulation factor; During stationary phase, converts 70S ribosomes to an inactive dimeric form (100S ribosomes); Belongs to the ribosome modulation factor family. (57 aa) | ||||
VS_1439 | Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (247 aa) | ||||
VS_1493 | Putative transporter fused subunits of ABC superfamily: ATP-binding components (fragment). (207 aa) | ||||
VS_1494 | Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (293 aa) | ||||
VS_1594 | Hypothetical protein. (286 aa) | ||||
pheT | Phenylalanyl-tRNA synthetase beta chain; Function of homologous gene experimentally demonstrated in another organism; enzyme; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (795 aa) | ||||
pheS | Phenylalanyl-tRNA synthetase alpha chain; Function of homologous gene experimentally demonstrated in another organism; enzyme; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (327 aa) | ||||
VS_1775 | ATP-dependent helicase. (1355 aa) | ||||
asnS | Asparaginyl-tRNA synthetase. (466 aa) | ||||
rplY | Ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. (92 aa) | ||||
VS_1959 | Translation elongation factor P. (189 aa) | ||||
VS_2009 | Hypothetical protein. (434 aa) | ||||
VS_2015 | Peptidyl-prolyl cis-trans isomerase B; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. (164 aa) | ||||
serS | Seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (435 aa) | ||||
VS_2057 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (556 aa) | ||||
VS_2092 | Peptidyl-prolyl cis-trans isomerase B; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. (164 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (432 aa) | ||||
rnd | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. (397 aa) | ||||
argS | Arginyl-tRNA synthetase. (577 aa) | ||||
glnS | Glutaminyl-tRNA synthetase. (555 aa) | ||||
rfaH | Transcription antiterminator; Enhances distal genes transcription elongation in a specialized subset of operons that encode extracytoplasmic components. Belongs to the RfaH family. (168 aa) | ||||
VS_2345 | Putative M50 family membrane-associated zinc metalloprotease precursor; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (452 aa) | ||||
VS_2348 | Phosphatidate cytidylyltransferase; Belongs to the CDS family. (280 aa) | ||||
uppS | Undecaprenyl pyrophosphate synthetase; Catalyzes the sequential condensation of isopentenyl diphosphate (IPP) with (2E,6E)-farnesyl diphosphate (E,E-FPP) to yield (2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-undecaprenyl diphosphate (di- trans,octa-cis-UPP). UPP is the precursor of glycosyl carrier lipid in the biosynthesis of bacterial cell wall polysaccharide components such as peptidoglycan and lipopolysaccharide. (255 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (195 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (243 aa) | ||||
tsf | Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (281 aa) | ||||
rpsB | Ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (254 aa) | ||||
map | Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (292 aa) | ||||
rpmE2 | Ribosomal protein L31. (86 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (571 aa) | ||||
nusB | N utilization substance protein B homolog; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (155 aa) | ||||
fusA | Elongation factor EF-G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (695 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (526 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (706 aa) | ||||
rpsO | Similar to ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa) | ||||
truB | tRNA pseudouridine 55 synthase; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (317 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (137 aa) | ||||
infB | Translation initiation factor 2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (896 aa) | ||||
nusA | Transcription elongation protein nusA; Participates in both transcription termination and antitermination. (495 aa) | ||||
rimP | Conserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (151 aa) | ||||
rlmE | 23S rRNA methylase; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (209 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (395 aa) | ||||
VS_2526 | Helicase. (832 aa) | ||||
gluQ | Glutamyl-Q tRNA(Asp) synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (300 aa) | ||||
rplS | Ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (117 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (246 aa) | ||||
rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (184 aa) | ||||
rpsP | Ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (82 aa) | ||||
truD | tRNA pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs; Belongs to the pseudouridine synthase TruD family. (358 aa) | ||||
pyrG | CTP synthase (UTP--ammonia ligase); Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (546 aa) | ||||
era | GTP-binding protein era homolog; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (323 aa) | ||||
rnc | Ribonuclease III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (225 aa) | ||||
valS | Valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (957 aa) | ||||
VS_2758 | Probable sigma(54) modulation protein. (95 aa) | ||||
VS_2764 | Hypothetical protein; Belongs to the UPF0307 family. (174 aa) | ||||
rplQ | Ribosomal protein L17. (126 aa) | ||||
rpsD | Ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa) | ||||
rpsK | Ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpsM | Ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa) | ||||
rpmJ | 50S ribosomal subunit protein L36; Function of homologous gene experimentally demonstrated in another organism; structure; Belongs to the bacterial ribosomal protein bL36 family. (37 aa) | ||||
secY | SecY, Preprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (444 aa) | ||||
rplO | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa) | ||||
rpmD | Ribosomal protein L30. (67 aa) | ||||
rpsE | Ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (166 aa) | ||||
rplR | Ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa) | ||||
rplF | Ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rpsH | Ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa) | ||||
rpsN | Ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (177 aa) | ||||
rplE | Ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa) | ||||
rplX | 50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (105 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (98 aa) | ||||
rpsQ | Ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa) | ||||
rpmC | 50S ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (64 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa) | ||||
rpsC | Ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (232 aa) | ||||
rplV | Ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (111 aa) | ||||
rpsS | Ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
rplB | Ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa) | ||||
rplW | Ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa) | ||||
rplD | Ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (200 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (209 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (108 aa) | ||||
tuf | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa) | ||||
fusA-2 | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (698 aa) | ||||
rpsG | Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
rpsL | Ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (340 aa) | ||||
rpmE | Ribosomal protein L31; Binds the 23S rRNA. (72 aa) | ||||
rplL | Putative ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (121 aa) | ||||
rplJ | Ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (177 aa) | ||||
rplA | Ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (234 aa) | ||||
rplK | Ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (162 aa) | ||||
nusG | Transcription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (182 aa) | ||||
tuf-2 | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (412 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (427 aa) | ||||
rhlB | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (436 aa) | ||||
atpC | ATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa) | ||||
atpD | ATP synthase beta chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (467 aa) | ||||
atpG | ATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (288 aa) | ||||
atpA | ATP synthase alpha chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (523 aa) | ||||
atpH1 | ATP synthase delta chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa) | ||||
atpF | ATP synthase B chain; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
atpE | ATP synthase C chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (85 aa) | ||||
atpB | ATP synthase a chain (ATPase protein 6); Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (265 aa) | ||||
VS_3159 | ATP synthase subunit I. (129 aa) | ||||
tmcA | Conserved hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). (710 aa) | ||||
VS_II0200 | ATP-dependent RNA helicase, DEAD box family; Function of homologous gene experimentally demonstrated in another organism; enzyme; Belongs to the DEAD box helicase family. (447 aa) | ||||
rhlE | ATP-dependent RNA helicase; DEAD-box RNA helicase involved in ribosome assembly. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. (523 aa) | ||||
VS_II0554 | Pseudouridylate synthase, 23S RNA-specific. (563 aa) | ||||
VS_II0568 | Superfamily II DNA and RNA helicase; Belongs to the DEAD box helicase family. (428 aa) | ||||
VS_II0612 | Putative GTPase. (343 aa) | ||||
VS_II0718 | Hypothetical ABC transporter ATP-binding protein. (527 aa) | ||||
VS_II0799 | ATP-dependent RNA helicase; Belongs to the DEAD box helicase family. (423 aa) | ||||
VS_II0812 | Similar to Protein chain release factor B. (136 aa) | ||||
VS_II0843 | Putative phospholipid-binding protein; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; extrachromosomal origin. (192 aa) | ||||
atpB-2 | ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (256 aa) | ||||
atpE-2 | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (78 aa) | ||||
atpF-2 | ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
atpH2 | ATP synthase subunit D; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (183 aa) | ||||
atpA-2 | ATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (513 aa) | ||||
atpG-2 | ATP synthase subunit C; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (289 aa) | ||||
atpD-2 | ATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (461 aa) | ||||
atpC-2 | Conserved hypothetical protein; Produces ATP from ADP in the presence of a proton gradient across the membrane. (147 aa) | ||||
deaD | ATP-dependent RNA helicase; DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. (689 aa) | ||||
VS_II1152 | rRNA methylase. (244 aa) | ||||
VS_II1158 | ATP-dependent RNA helicase; Belongs to the DEAD box helicase family. (399 aa) | ||||
VS_II1163 | ATP-dependent RNA helicase; Belongs to the DEAD box helicase family. (468 aa) | ||||
VS_II1196 | Putative ribosomal large chain pseudouridine synthase A. (570 aa) |