Your Input: | |||||
hemN | Catalyzes the oxygen-independent formation of protoporphyrinogen-IX from coproporphyrinogen-III; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the anaerobic coproporphyrinogen-III oxidase family. (457 aa) | ||||
dusA | tRNA dihydrouridine synthase DusA; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines. Specifically modifies U20 and U20a in tRNAs; Belongs to the Dus family. DusA subfamily. (344 aa) | ||||
caiA | crotonobetainyl-CoA--carnitine CoA-transferase; Catalyzes the reduction of crotonobetainyl-CoA to gamma- butyrobetainyl-CoA; Belongs to the acyl-CoA dehydrogenase family. (380 aa) | ||||
AND11754.1 | acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa) | ||||
cysG-2 | Sirohydrochlorin ferrochelatase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (473 aa) | ||||
hemF | Coproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX. (302 aa) | ||||
cysG | Siroheme synthase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (460 aa) | ||||
fabI | Enoyl-[acyl-carrier-protein] reductase; Catalyzes a key regulatory step in fatty acid biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa) | ||||
AND13086.1 | Pyridoxamine 5'-phosphate oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
pyrD | Dihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa) | ||||
dusC | tRNA dihydrouridine synthase DusC; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines. Specifically modifies U16 in tRNAs. Belongs to the Dus family. DusC subfamily. (310 aa) | ||||
sdhA | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa) | ||||
sdhD | Succinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (114 aa) | ||||
sdhC | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (125 aa) | ||||
tyrA | Bifunctional chorismate mutase/prephenate dehydrogenase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa) | ||||
fadE | acyl-CoA dehydrogenase; Functions in fatty acid oxidation; converts acyl-CoA and FAD to FADH2 and delta2-enoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (815 aa) | ||||
hemW | YggW family oxidoreductase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (376 aa) | ||||
dapB | 4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa) | ||||
fadH | NADPH-dependent 2,4-dienoyl-CoA reductase; Catalyzes the formation of trans-2- enoyl-CoA from 2,4-dienoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (672 aa) | ||||
dusB | tRNA dihydrouridine synthase DusB; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. DusB subfamily. (323 aa) | ||||
AND14453.1 | Fumarate reductase (quinol) flavoprotein subunit; Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa) | ||||
frdB | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
frdC | Fumarate reductase subunit C; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa) | ||||
frdD | Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (119 aa) | ||||
AND14481.1 | Protoporphyrinogen oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (176 aa) | ||||
wecC | UDP-N-acetyl-D-mannosamine dehydrogenase; Catalyzes the four-electron oxidation of UDP-N-acetyl-D- mannosamine (UDP-ManNAc), reducing NAD(+) and releasing UDP-N- acetylmannosaminuronic acid (UDP-ManNAcA); Belongs to the UDP-glucose/GDP-mannose dehydrogenase family. WecC subfamily. (420 aa) |