STRINGSTRING
rbsK rbsK aceE aceE AND12044.1 AND12044.1 parC parC rbsK-2 rbsK-2 ribH ribH ribD ribD rbsK-3 rbsK-3 rbsK-4 rbsK-4 pflB pflB sodA sodA xylB xylB xylA xylA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rbsKRibokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (406 aa)
aceEPyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (888 aa)
AND12044.1Glycosyl hydrolase family 32; Enables the bacterium to metabolize sucrose as a sole carbon source; Belongs to the glycosyl hydrolase 32 family. (488 aa)
parCDNA topoisomerase IV; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. (985 aa)
rbsK-2Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (308 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin; Belongs to the DMRL synthase family. (156 aa)
ribDDiaminohydroxyphosphoribosylaminopyrimidine deaminase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (385 aa)
rbsK-3Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (306 aa)
rbsK-4Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (308 aa)
pflBFormate acetyltransferase; catalyzes the formation of formate and acetyl-CoA from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (760 aa)
sodASuperoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the iron/manganese superoxide dismutase family. (207 aa)
xylBXylulokinase; Catalyzes the formation of D-xylulose-5-phosphate fro D-xylulose; Derived by automated computational analysis using gene prediction method: Protein Homology. (484 aa)
xylAXylose isomerase; Catalyzes the interconversion of D-xylose to D-xylulose; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the xylose isomerase family. (438 aa)
Your Current Organism:
Proteus mirabilis
NCBI taxonomy Id: 584
Other names: ATCC 29906, CCUG 26767, CIP 103181, DSM 4479, LMG 3257, LMG:3257, NCTC 11938, P. mirabilis
Server load: low (32%) [HD]