Your Input: | |||||
AND11464.1 | Dihydrodipicolinate synthase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (309 aa) | ||||
metF | MTHFR; catalyzes NADH-linked reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using FAD as a cofactor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. (299 aa) | ||||
glpE | Thiosulfate sulfurtransferase; Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. (108 aa) | ||||
glnA | Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa) | ||||
yihX | Glucose-1-phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
AND11561.1 | Tautomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 4-oxalocrotonate tautomerase family. (68 aa) | ||||
argD | Acetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (405 aa) | ||||
prkB | Phosphoribulokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (289 aa) | ||||
aceB | Malate synthase A; Catalyzes the aldol condensation of glyoxylate with acetyl-CoA to form malate as part of the second step of the glyoxylate bypass and an alternative to the tricarboxylic acid cycle; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa) | ||||
aceA | Isocitrate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa) | ||||
eda_1 | Keto-deoxy-phosphogluconate aldolase; Catalyzes the formation of pyruvate and glyoxylate from 4-hydroxy-2-oxoglutarate; or pyruvate and D-glyceraldehyde 3-phosphate from 2-dehydro-3-deoxy-D-glyconate 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa) | ||||
edd | Phosphogluconate dehydratase; Catalyzes the dehydration of 6-phospho-D-gluconate to 2- dehydro-3-deoxy-6-phospho-D-gluconate; Belongs to the IlvD/Edd family. (618 aa) | ||||
AND11641.1 | Lysine-sensitive aspartokinase 3; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; functions in amino acid biosynthesis; lysine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (456 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (548 aa) | ||||
AND11684.1 | Phosphate propanoyltransferase; Involved in 1,2-propanediol (1,2-PD) degradation by catalyzing the conversion of propanoyl-CoA to propanoyl-phosphate. (214 aa) | ||||
gntK | Gluconate kinase; Thermoresistant; catalyzes the formation of 6-phospho-D-gluconate from gluconate; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
AND11785.1 | Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (158 aa) | ||||
serB | Phosphoserine phosphatase; Catalyzes the formation of serine from O-phosphoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (325 aa) | ||||
AND11833.1 | Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (483 aa) | ||||
dapD | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (274 aa) | ||||
accA_1 | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa) | ||||
cysJ | Sulfite reductase subunit alpha; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component. Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the N-terminal section; belongs to the flavodoxin family. (604 aa) | ||||
cysI | Sulfite reductase subunit beta; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (576 aa) | ||||
cysH | Phosphoadenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. Belongs to the PAPS reductase family. CysH subfamily. (243 aa) | ||||
cysG-2 | Sirohydrochlorin ferrochelatase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (473 aa) | ||||
cysD | Sulfate adenylyltransferase small subunit; With CysN catalyzes the formation of adenylylsulfate from sulfate and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
cysN | Sulfate adenylyltransferase subunit CysN; May be the GTPase, regulating ATP sulfurylase activity. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (485 aa) | ||||
cysC | Adenylyl-sulfate kinase; Catalyzes the synthesis of activated sulfate. (204 aa) | ||||
AND12035.1 | Carbamate kinase; Reversible synthesis of carbamate and ATP from carbamoyl phosphate and ADP; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa) | ||||
folD | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (290 aa) | ||||
eda_2 | 2-dehydro-3-deoxyphosphogluconate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa) | ||||
AND12084.1 | Ketodeoxygluconokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (310 aa) | ||||
aldB | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (493 aa) | ||||
aceE | Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (888 aa) | ||||
aceF | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (621 aa) | ||||
lpdA | Dihydrolipoyl dehydrogenase; E3 component of pyruvate and 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa) | ||||
AND12181.1 | Aconitate hydratase B; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (865 aa) | ||||
rpiA | Ribose 5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (218 aa) | ||||
serA | D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (416 aa) | ||||
ghrB | Bifunctional glyoxylate/hydroxypyruvate reductase B; Catalyzes the formation of glycolate from glyoxylate and glycerate from hydroxypyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (319 aa) | ||||
galM | Galactose-1-epimerase; Converts alpha-aldose to the beta-anomer. (356 aa) | ||||
mqo | Malate:quinone oxidoreductase; Malate dehydrogenase; catalyzes the oxidation of malate to oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (498 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa) | ||||
cysK | Cysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (317 aa) | ||||
gltX | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (472 aa) | ||||
phsC | Thiosulfate reductase cytochrome B subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (255 aa) | ||||
dmsB_3 | Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa) | ||||
AND12453.1 | Thiosulfate reductase PhsA; Catalyzes the production of hydrogen sulfide from thiosulfate; Derived by automated computational analysis using gene prediction method: Protein Homology. (759 aa) | ||||
fadI | 3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. (434 aa) | ||||
fadJ | Multifunctional fatty acid oxidation complex subunit alpha; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (722 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (320 aa) | ||||
ubiX | 3-octaprenyl-4-hydroxybenzoate carboxy-lyase; Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for 4-hydroxy-3-polyprenylbenzoic acid decarboxylase UbiD. The prenyltransferase is metal-independent and links a dimethylallyl moiety from dimethylallyl monophosphate (DMAP) to the flavin N5 and C6 atoms of FMN; Belongs to the UbiX/PAD1 family. (193 aa) | ||||
cmtB | PTS mannitol transporter subunit IIA; TolM; with CmtA (IIBC), CmtB possibly forms the mannitol-like permease component of the cryptic mannitol phosphotransferase system, which phosphorylates and transports various carbohydrates and polyhydric alcohols in Escherichia coli; cytoplasmic protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (147 aa) | ||||
AND12487.1 | PTS ascorbate transporter subunit IIB; Derived by automated computational analysis using gene prediction method: Protein Homology. (95 aa) | ||||
ulaA | PTS ascorbate transporter subunit IIC; Derived by automated computational analysis using gene prediction method: Protein Homology. (418 aa) | ||||
AND12499.1 | Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (400 aa) | ||||
AND12656.1 | Tetrathionate reductase subunit B; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa) | ||||
ttrC | Tetrathionate reductase subunit C; Derived by automated computational analysis using gene prediction method: Protein Homology. (342 aa) | ||||
AND12658.1 | Tetrathionate reductase subunit A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1026 aa) | ||||
fbaB | Fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa) | ||||
dapA_2 | 4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (299 aa) | ||||
dapE | Succinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (376 aa) | ||||
AND12783.1 | Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (760 aa) | ||||
AND12800.1 | Sugar dehydrogenase; Converts glucose to D-glucono-1,5 lactone; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa) | ||||
glpX | Fructose 1,6-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (326 aa) | ||||
AOUC001_08070 | MltA-interacting protein MipA; Scaffolding protein for the murein polymerase MrcB and the lytic transglycosylase MltA; internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glucose-6-phosphate 1-epimerase family. (294 aa) | ||||
gapA-2 | Type I glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (331 aa) | ||||
adhE_5 | Bifunctional acetaldehyde-CoA/alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family. (887 aa) | ||||
AND12852.1 | Nitrite reductase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (848 aa) | ||||
nirD | Nitrite reductase small subunit; Involved in reducing nitrite to ammonium to detoxify nitrite accumulation in anaerobic nitrate-respiring cells and regenerate NAD+; bounds to NirB, the cytoplasmic subunit, whose expression is induced at high nitrate concentrations; Derived by automated computational analysis using gene prediction method: Protein Homology. (110 aa) | ||||
cysG | Siroheme synthase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (460 aa) | ||||
hemB | Delta-aminolevulinic acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ALAD family. (325 aa) | ||||
ppsA | Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (791 aa) | ||||
AND12918.1 | Glutamate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the group II decarboxylase family. (463 aa) | ||||
pykF | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa) | ||||
pdxH | Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (217 aa) | ||||
AND12996.1 | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (890 aa) | ||||
AND13014.1 | Oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa) | ||||
fumC | Class II fumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (465 aa) | ||||
AND13055.1 | Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (320 aa) | ||||
AND13152.1 | Lactate dehydrogenase; Fermentative; catalyzes the formationof pyruvate from lactate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (332 aa) | ||||
zwf | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (491 aa) | ||||
pyk | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (480 aa) | ||||
ghrA | Glyoxylate/hydroxypyruvate reductase A; Catalyzes the formation of glycolate and glycerate from glyoxylate and hydroxypyruvate, respectively; Derived by automated computational analysis using gene prediction method: Protein Homology. (313 aa) | ||||
hemA | glutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde (GSA). (420 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (315 aa) | ||||
lhgO | Hydroxyglutarate oxidase; Catalyzed the formation of 2-ketoglutarate from 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
AND13374.1 | Isocitrate dehydrogenase (NADP(+)); Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa) | ||||
dld | D-lactate dehydrogenase; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (589 aa) | ||||
yccX | Acylphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (94 aa) | ||||
mgsA | Methylglyoxal synthase; Catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate. (152 aa) | ||||
serC | Phosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (362 aa) | ||||
pflB | Formate acetyltransferase; catalyzes the formation of formate and acetyl-CoA from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (760 aa) | ||||
AND13624.1 | Catalyzes the formation of oxalurate from ureidoglycolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the LDH2/MDH2 oxidoreductase family. (349 aa) | ||||
fhs | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (556 aa) | ||||
yiaY | L-threonine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa) | ||||
gndA | Phosphogluconate dehydrogenase (NADP(+)-dependent, decarboxylating); Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa) | ||||
sseA | 3-mercaptopyruvate sulfurtransferase; Catalyzes the transfer of a sulfur ion to cyanide or to other thiol compounds; Derived by automated computational analysis using gene prediction method: Protein Homology. (281 aa) | ||||
AND13718.1 | 6-phosphogluconolactonase; Catalyzes the hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa) | ||||
gpmA | Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa) | ||||
sucD | succinate--CoA ligase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (290 aa) | ||||
sucC | succinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa) | ||||
odhB | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (402 aa) | ||||
sucA | 2-oxoglutarate dehydrogenase E1 component; Derived by automated computational analysis using gene prediction method: Protein Homology. (934 aa) | ||||
sdhB | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa) | ||||
sdhA | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa) | ||||
sdhD | Succinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (114 aa) | ||||
sdhC | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (125 aa) | ||||
gltA | Citrate (Si)-synthase; Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cit [...] (427 aa) | ||||
pgm | Phosphoglucomutase, alpha-D-glucose phosphate-specific; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (547 aa) | ||||
AND13858.1 | S-(hydroxymethyl)glutathione dehydrogenase/class III alcohol dehydrogenase; Catalyzes the formation of S-formylglutathione from S-(hydroxymethyl)glutathione; also catalyzes the formation of aldehyde or ketone from alcohols; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (370 aa) | ||||
AND13859.1 | S-formylglutathione hydrolase; Serine hydrolase involved in the detoxification of formaldehyde. (276 aa) | ||||
lysA | Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (414 aa) | ||||
hpaC | 4-hydroxyphenylacetate 3-monooxygenase; Catalyzes the reduction of MN, FAD and riboflavin by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology. (172 aa) | ||||
fbaA | Class II fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (387 aa) | ||||
tkt | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (664 aa) | ||||
lysA_1 | Decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
eno | Phosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (433 aa) | ||||
hemL | Glutamate-1-semialdehyde aminotransferase; Converts (S)-4-amino-5-oxopentanoate to 5-aminolevulinate during the porphyrin biosynthesis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa) | ||||
AND14269.1 | Thiosulfate reductase cytochrome B subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (265 aa) | ||||
hybC | Hydrogenase 2 large subunit; Involved in hydrogen uptake; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the [NiFe]/[NiFeSe] hydrogenase large subunit family. (567 aa) | ||||
hybO | Hydrogenase 2 small subunit; Involved in hydrogen uptake; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa) | ||||
dapB | 4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa) | ||||
talB | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa) | ||||
thrC | Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa) | ||||
thrB | Homoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa) | ||||
thrA | Bifunctional aspartate kinase/homoserine dehydrogenase I; Multifunctional homotetrameric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (819 aa) | ||||
gpmB | Phosphoglycerate mutase; Catalyzes reactions involving the transfer of phospho groups between the three carbon atoms of phosphoglycerate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (215 aa) | ||||
ureC | Urease subunit alpha; Ureases catalyze the hydrolysis of urea into ammonia and carbon dioxide; in Helicobacter pylori the ammonia released plays a key role in bacterial survival by neutralizing acids when colonizing the gastric mucosa; the holoenzyme is composed of 3 ureC (alpha) and 3 ureAB (gamma/beta) subunits; Derived by automated computational analysis using gene prediction method: Protein Homology. (567 aa) | ||||
ureB | Urease subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the urease beta subunit family. (108 aa) | ||||
ureA | Urease subunit gamma; UreA, with UreB and UreC catalyzes the hydrolysis of urea into ammonia and carbon dioxide; nickel metalloenzyme; accessory proteins UreD, UreE, UreF, and UreG are necessary for assembly of the metallocenter; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the urease gamma subunit family. (100 aa) | ||||
gltB | Glutamate synthase large subunit; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1485 aa) | ||||
AND14370.1 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa) | ||||
accB | acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (156 aa) | ||||
accC | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa) | ||||
AND14433.1 | Glycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glycerate kinase type-1 family. (382 aa) | ||||
AND14453.1 | Fumarate reductase (quinol) flavoprotein subunit; Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa) | ||||
frdB | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
frdC | Fumarate reductase subunit C; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa) | ||||
frdD | Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (119 aa) | ||||
narI | With NarGJH catalyzes the reduction of nitrate; the gamma subunit localizes NarGHI to the membrane; one of 3 nitrate reductases in E. coli and in E. coli is expressed when nitrate levels are high; Derived by automated computational analysis using gene prediction method: Protein Homology. (225 aa) | ||||
narH | With NarGJI catalyzes the reduction of nitrate; the beta subunit is an iron sulfur cluster containing electron transfer subunit; one of 3 nitrate reductases in E. coli and in E. coli is expressed when nitrate levels are high; Derived by automated computational analysis using gene prediction method: Protein Homology. (517 aa) | ||||
narZ | Nitrate reductase subunit alpha; With NarYV catalyzes the reduction of nitrate; the beta subunit is an iron sulfur cluster containing electron transfer subunit; one of 3 nitrate reductases in E. coli; expression of nitrate reductase Z is not dependent on nitrate levels; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1253 aa) | ||||
AND14477.1 | acetyl/propionyl-CoA carboxylase subuit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa) | ||||
fadB | Xaa-Pro dipeptidase; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (726 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. (387 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa) | ||||
cysQ | 3'(2'),5'-bisphosphate nucleotidase CysQ; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (246 aa) | ||||
gabD | Succinate-semialdehyde dehydrogenase (NADP(+)); Catalyzes the formation of succinate from succinate semialdehyde; NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology. (482 aa) | ||||
dapF | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (274 aa) | ||||
hemC | Hydroxymethylbilane synthase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps. Belongs to the HMBS family. (313 aa) | ||||
hemD | uroporphyrinogen-III synthase; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III. (245 aa) | ||||
AND14661.1 | uroporphyrinogen-III C-methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (416 aa) | ||||
ppc | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (878 aa) | ||||
metL | Bifunctional aspartate kinase/homoserine dehydrogenase II; Multifunctional homodimeric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (812 aa) | ||||
tpiA | Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (256 aa) | ||||
pfkA | ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (325 aa) | ||||
AND14797.1 | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
cysE | Catalyzes the O-acetylation of serine; Derived by automated computational analysis using gene prediction method: Protein Homology. (273 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (368 aa) | ||||
AND14865.1 | Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (323 aa) | ||||
AND14869.1 | Sulfate ABC transporter substrate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
AND14870.1 | Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (803 aa) | ||||
fdxH | Formate dehydrogenase subunit beta; The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. (312 aa) | ||||
fdoI | Formate dehydrogenase; Cytochrome b556(FDO) component; heme containing; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa) | ||||
phnX | Phosphonoacetaldehyde hydrolase; Involved in phosphonate degradation; Belongs to the HAD-like hydrolase superfamily. PhnX family. (270 aa) | ||||
acs | Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa) | ||||
rpe | Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (224 aa) | ||||
pckA | Phosphoenolpyruvate carboxykinase (ATP); Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (539 aa) | ||||
gdhA | Converts 2-oxoglutarate to glutamate; in Escherichia coli this enzyme plays a role in glutamate synthesis when the cell is under energy restriction; uses NADPH; forms a homohexamer; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (446 aa) |