STRINGSTRING
AND11464.1 AND11464.1 glnA glnA argD argD metA metA metH metH AND11641.1 AND11641.1 AND11785.1 AND11785.1 serB serB AND11833.1 AND11833.1 aroH_1 aroH_1 argA argA dapD dapD metK metK leuD leuD leuC leuC leuB leuB leuA leuA AND12181.1 AND12181.1 rpiA rpiA serA serA glyA glyA cysM cysM cysK cysK aroC aroC AND12505.1 AND12505.1 sdaA sdaA fbaB fbaB dapA_2 dapA_2 dapE dapE gapA-2 gapA-2 AND12868.1 AND12868.1 aroH_2 aroH_2 pykF pykF trpA trpA trpB trpB trpC trpC trpD trpD AND12980.1 AND12980.1 AND12981.1 AND12981.1 AND12996.1 AND12996.1 AND13049.1 AND13049.1 AND13055.1 AND13055.1 pyk pyk prs prs AND13241.1 AND13241.1 AND13374.1 AND13374.1 AND13563.1 AND13563.1 aroA aroA serC serC sdaB sdaB hisG hisG hisD hisD hisB hisB hisH hisH hisA hisA hisF hisF hisI hisI metC metC gpmA gpmA aroG aroG gltA gltA pheA pheA tyrA tyrA AND13915.1 AND13915.1 luxS luxS aroL aroL proA proA proB proB lysA lysA proC proC fbaA fbaA pgk pgk tkt tkt cysK_2 cysK_2 lysA_1 lysA_1 eno eno mtnN mtnN AND14193.1 AND14193.1 metC-2 metC-2 dapB dapB talB talB thrC thrC thrB thrB thrA thrA gpmB gpmB gltB gltB AND14370.1 AND14370.1 aroQ aroQ metE metE ilvN ilvN AND14515.1 AND14515.1 argF argF dapF dapF ilvC ilvC ilvA ilvA ilvD ilvD ilvE ilvE ilvM ilvM ilvG ilvG aroE aroE argH argH argG argG argB argB argC argC argE argE metL metL AND14762.1 AND14762.1 tpiA tpiA pfkA pfkA AND14797.1 AND14797.1 cysE cysE asd asd asnA asnA rpe rpe aroB aroB aroK aroK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AND11464.1Dihydrodipicolinate synthase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (309 aa)
glnAForms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa)
argDAcetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (405 aa)
metAHomoserine O-succinyltransferase; Transfers a succinyl group from succinyl-CoA to L-homoserine, forming succinyl-L-homoserine; Belongs to the MetA family. (309 aa)
metHMethionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1223 aa)
AND11641.1Lysine-sensitive aspartokinase 3; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; functions in amino acid biosynthesis; lysine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (456 aa)
AND11785.1Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (158 aa)
serBPhosphoserine phosphatase; Catalyzes the formation of serine from O-phosphoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (325 aa)
AND11833.1Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (483 aa)
aroH_1Phospho-2-dehydro-3-deoxyheptonate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (468 aa)
argAAmino-acid N-acetyltransferase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (444 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (274 aa)
metKMethionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (384 aa)
leuD3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (200 aa)
leuCIsopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (469 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (363 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (519 aa)
AND12181.1Aconitate hydratase B; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (865 aa)
rpiARibose 5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (218 aa)
serAD-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (416 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa)
cysMCysteine synthase B; Catalyzes the formation of cysteine from 3-O-acetyl-L-serine and hydrogen sulfide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (293 aa)
cysKCysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (317 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa)
AND12505.1Aminotransferase; Broad specificity; family IV; in Corynebacterium glutamicum this protein can use glutamate, 2-aminobutyrate, and aspartate as amino donors and pyruvate as the acceptor; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa)
sdaAL-serine ammonia-lyase; Catalyzes the formation of pyruvate from serine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (453 aa)
fbaBFructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa)
dapA_24-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (299 aa)
dapESuccinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (376 aa)
gapA-2Type I glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (331 aa)
AND12868.1Aminotransferase class I; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa)
aroH_23-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (349 aa)
pykFPyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (269 aa)
trpBTryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (396 aa)
trpCBifunctional indole-3-glycerol phosphate synthase/phosphoribosylanthranilate isomerase; Monomeric bifunctional protein; functions in tryptophan biosynthesis pathway; phosphoribosylanthranilate is rearranged to carboxyphenylaminodeoxyribulosephosphate which is then closed to form indole-3-glycerol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (457 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (332 aa)
AND12980.1Anthranilate synthase component II; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa)
AND12981.1With component II, the glutamine amidotransferase, catalyzes the formation of anthranilate from chorismate and glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (525 aa)
AND12996.1Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (890 aa)
AND13049.1Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa)
AND13055.1Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa)
pykPyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (480 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (315 aa)
AND13241.1Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (559 aa)
AND13374.1Isocitrate dehydrogenase (NADP(+)); Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa)
AND13563.1Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (428 aa)
serCPhosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (362 aa)
sdaBL-serine ammonia-lyase; Catalyzes the formation of pyruvate from serine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (454 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. (299 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (438 aa)
hisBBifunctional imidazole glycerol-phosphate dehydratase/histidinol phosphatase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the histidinol- phosphatase family. (355 aa)
hisHImidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (196 aa)
hisA1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa)
hisFImidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (257 aa)
hisIBifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP diphosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (205 aa)
metCCystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)
gpmAPhosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa)
aroG3-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (352 aa)
gltACitrate (Si)-synthase; Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cit [...] (427 aa)
pheABifunctional chorismate mutase/prephenate dehydratase; Catalyzing the formation of prephenate from chorismate and the formation of phenylpyruvate from prephenate in phenylalanine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa)
tyrABifunctional chorismate mutase/prephenate dehydrogenase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa)
AND13915.1Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (364 aa)
luxSS-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (171 aa)
aroLShikimate kinase II; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (170 aa)
proAGamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (417 aa)
proBGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (367 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (414 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (272 aa)
fbaAClass II fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (387 aa)
tktTransketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (664 aa)
cysK_2Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa)
lysA_1Decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa)
enoPhosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (433 aa)
mtnN5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5-deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulatio [...] (235 aa)
AND14193.1Diaminopimelate dehydrogenase; Catalyzes the reversible NADPH-dependent reductive amination of L-2-amino-6-oxopimelate, the acyclic form of L- tetrahydrodipicolinate, to generate the meso compound, D,L-2,6- diaminopimelate. (299 aa)
metC-2Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa)
dapB4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa)
talBTransaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa)
thrCThreonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa)
thrABifunctional aspartate kinase/homoserine dehydrogenase I; Multifunctional homotetrameric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (819 aa)
gpmBPhosphoglycerate mutase; Catalyzes reactions involving the transfer of phospho groups between the three carbon atoms of phosphoglycerate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (215 aa)
gltBGlutamate synthase large subunit; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1485 aa)
AND14370.1Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa)
aroQ3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (147 aa)
metE5-methyltetrahydropteroyltriglutamate-- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (757 aa)
ilvNAcetolactate synthase isozyme 1 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (94 aa)
AND14515.1Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (564 aa)
argFOrnithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (334 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (274 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (491 aa)
ilvAPLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (524 aa)
ilvDDihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (616 aa)
ilvEBranched chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (308 aa)
ilvMAcetolactate synthase 2 regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (92 aa)
ilvGAcetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa)
aroEShikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (274 aa)
argHArgininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (460 aa)
argGArgininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (403 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate. (257 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa)
argEAcetylornithine deacetylase; Catalyzes the formation of L-ornithine from N(2)-acetyl-L-ornithine in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa)
metLBifunctional aspartate kinase/homoserine dehydrogenase II; Multifunctional homodimeric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (812 aa)
AND14762.1Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa)
tpiATriose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (256 aa)
pfkAATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (325 aa)
AND14797.1Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa)
cysECatalyzes the O-acetylation of serine; Derived by automated computational analysis using gene prediction method: Protein Homology. (273 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (368 aa)
asnACatalyzes the formation of asparagine from aspartate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa)
rpeRibulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (224 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (364 aa)
aroKShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
Your Current Organism:
Proteus mirabilis
NCBI taxonomy Id: 584
Other names: ATCC 29906, CCUG 26767, CIP 103181, DSM 4479, LMG 3257, LMG:3257, NCTC 11938, P. mirabilis
Server load: low (24%) [HD]