Your Input: | |||||
rpsT | 30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA. (87 aa) | ||||
map | Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (264 aa) | ||||
rpsB | 30S ribosomal subunit protein S2; Function experimentally demonstrated in the studied species; structure; Belongs to the universal ribosomal protein uS2 family. (241 aa) | ||||
tsf | Protein chain elongation factor EF-Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (283 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
yaeJ | Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (140 aa) | ||||
nusB | Transcription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (139 aa) | ||||
tig | Peptidyl-prolyl cis/trans isomerase (trigger factor); Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase. (432 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
rpsA | 30S ribosomal subunit protein S1; Required for translation of most natural mRNAs except for leaderless mRNA. Binds mRNA upstream of the Shine-Dalgarno (SD) sequence and helps it bind to the 30S ribosomal subunit; acts as an RNA chaperone to unfold structured mRNA on the ribosome but is not essential for mRNAs with strong SDs and little 5'-UTR structure, thus it may help fine-tune which mRNAs that are translated. Unwinds dsRNA by binding to transiently formed ssRNA regions; binds about 10 nucleotides. Has a preference for polypyrimidine tracts. Negatively autoregulates its own translation. (557 aa) | ||||
yceD | Conserved hypothetical protein; Homologs of previously reported genes of unknown function; 1447160. (173 aa) | ||||
rpmF | 50S ribosomal subunit protein L32; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bL32 family. (57 aa) | ||||
rplT | 50S ribosomal subunit protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa) | ||||
rpmI | 50S ribosomal subunit protein L35; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bL35 family. (65 aa) | ||||
yeiP | Putative elongation factor; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative factor; Belongs to the elongation factor P family. (275 aa) | ||||
rplY | 50S ribosomal subunit protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. (94 aa) | ||||
suhB | Inositol monophosphatase; Function experimentally demonstrated in the studied species; enzyme; Belongs to the inositol monophosphatase superfamily. (267 aa) | ||||
rplS | 50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (115 aa) | ||||
trmD | tRNA (guanine-1-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (255 aa) | ||||
rimM | 16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (182 aa) | ||||
rpsP | 30S ribosomal subunit protein S16; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bS16 family. (82 aa) | ||||
smpB | Trans-translation protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switch [...] (160 aa) | ||||
relA | (p)ppGpp synthetase I/GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (744 aa) | ||||
prfB | Peptide chain release factor RF-2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (365 aa) | ||||
rpsU | 30S ribosomal subunit protein S21; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bS21 family. (71 aa) | ||||
rpoD | RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (613 aa) | ||||
rpsO | 30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa) | ||||
nusA | Transcription termination/antitermination L factor; Participates in both transcription termination and antitermination. (495 aa) | ||||
rpmA | 50S ribosomal subunit protein L27; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bL27 family. (85 aa) | ||||
rplU | 50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
rpsI | 30S ribosomal subunit protein S9; Function experimentally demonstrated in the studied species; structure; Belongs to the universal ribosomal protein uS9 family. (130 aa) | ||||
rplM | 50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (169 aa) | ||||
yhdL | Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (72 aa) | ||||
rplQ | 50S ribosomal subunit protein L17; Function experimentally demonstrated in the studied species; structure. (127 aa) | ||||
rpoA | RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (329 aa) | ||||
rpsD | 30S ribosomal subunit protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa) | ||||
rpsK | 30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpsM | 30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa) | ||||
secY | Preprotein translocase membrane subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (443 aa) | ||||
rplO | 50S ribosomal subunit protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa) | ||||
rpmD | 50S ribosomal subunit protein L30; Function experimentally demonstrated in the studied species; structure. (59 aa) | ||||
rpsE | 30S ribosomal subunit protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (167 aa) | ||||
rplR | 50S ribosomal subunit protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa) | ||||
rplF | 50S ribosomal subunit protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rpsH | 30S ribosomal subunit protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa) | ||||
rpsN | 30S ribosomal subunit protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa) | ||||
rplE | 50S ribosomal subunit protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa) | ||||
rplX | 50S ribosomal subunit protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (104 aa) | ||||
rplN | 50S ribosomal subunit protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa) | ||||
rpsQ | 30S ribosomal subunit protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa) | ||||
rpmC | 50S ribosomal subunit protein L29; Function experimentally demonstrated in the studied species; structure; Belongs to the universal ribosomal protein uL29 family. (63 aa) | ||||
rplP | 50S ribosomal subunit protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa) | ||||
rpsC | 30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (233 aa) | ||||
rplV | 50S ribosomal subunit protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (110 aa) | ||||
rpsS | 30S ribosomal subunit protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
rplB | 50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (273 aa) | ||||
rplW | 50S ribosomal subunit protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa) | ||||
rplD | 50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (201 aa) | ||||
rplC | 50S ribosomal subunit protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (209 aa) | ||||
rpsJ | 30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa) | ||||
tufA | Protein chain elongation factor EF-Tu (duplicate of tufB); This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa) | ||||
fusA | Protein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...] (704 aa) | ||||
rpsG | 30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
rpsL | 30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa) | ||||
rpmG | 50S ribosomal subunit protein L33; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
rpmB | 50S ribosomal subunit protein L28; Function experimentally demonstrated in the studied species; structure; Belongs to the bacterial ribosomal protein bL28 family. (78 aa) | ||||
rpoZ | RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa) | ||||
rho | Transcription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (419 aa) | ||||
rfaH | DNA-binding transcriptional antiterminator; Enhances distal genes transcription elongation in a specialized subset of operons that encode extracytoplasmic components. RfaH is recruited into a multi-component RNA polymerase complex by the ops element, which is a short conserved DNA sequence located downstream of the main promoter of these operons. Once bound, RfaH suppresses pausing and inhibits Rho-dependent and intrinsic termination at a subset of sites. Termination signals are bypassed, which allows complete synthesis of long RNA chains. (162 aa) | ||||
rpmE | 50S ribosomal subunit protein L31; Binds the 23S rRNA. (70 aa) | ||||
tufB | Protein chain elongation factor EF-Tu (duplicate of tufA); This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa) | ||||
nusG | Transcription termination factor; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA transcriptional antitermination; Belongs [...] (181 aa) | ||||
rplK | 50S ribosomal subunit protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa) | ||||
rplA | 50S ribosomal subunit protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (234 aa) | ||||
rplJ | 50S ribosomal subunit protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (165 aa) | ||||
rplL | 50S ribosomal subunit protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (121 aa) | ||||
rpoB | RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa) | ||||
rpoC | RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa) | ||||
rpsF | 30S ribosomal subunit protein S6; Binds together with S18 to 16S ribosomal RNA. (131 aa) | ||||
rpsR | 30S ribosomal subunit protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa) | ||||
rplI | 50S ribosomal subunit protein L9; Binds to the 23S rRNA. (149 aa) | ||||
prfC | Peptide chain release factor RF-3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (529 aa) |