STRINGSTRING
udk_1 udk_1 APG49435.1 APG49435.1 htrB_2 htrB_2 pyrC pyrC rpe_1 rpe_1 fliI fliI citF citF citE_1 citE_1 citD citD pgsA pgsA nadX nadX arnB_1 arnB_1 arnC arnC arnA arnA arnD arnD arnT_1 arnT_1 arnE arnE arnF arnF pykF pykF purR_1 purR_1 pdxH pdxH pdxY pdxY uspG_2 uspG_2 uspG_2-2 uspG_2-2 APG49787.1 APG49787.1 prs prs ispE ispE ynbA ynbA msbB msbB pykA pykA zwf_1 zwf_1 pdxK pdxK amn amn accA_1 accA_1 APG49922.1 APG49922.1 APG49966.1 APG49966.1 APG49982.1 APG49982.1 APG50012.1 APG50012.1 add add pyrF pyrF pgpB pgpB APG50071.1 APG50071.1 cls cls tdk tdk purU purU APG50095.1 APG50095.1 nnr nnr APG50129.1 APG50129.1 guaA guaA guaB guaB purC purC upp upp purM purM purN purN ppk ppk yegS yegS fbaB fbaB thiD thiD pagP pagP APG50222.1 APG50222.1 purB_1 purB_1 thiK thiK tmk tmk plsX plsX maf maf nrdB nrdB yfbR_1 yfbR_1 ackA ackA pta pta yfcD yfcD purF purF accD accD moaF_1 moaF_1 ispG ispG ndk ndk suhB_2 suhB_2 nadE nadE nadB nadB ppnK ppnK APG50656.1 APG50656.1 APG50669.1 APG50669.1 rpiA rpiA APG50696.1 APG50696.1 aceF aceF aceE aceE nadC_1 nadC_1 coaE coaE lpxC lpxC napA napA htrB_1 htrB_1 folD folD lpxH lpxH purE purE purK purK APG50837.1 APG50837.1 ushA ushA adk adk apt apt eno eno pyrG pyrG mazG mazG relA relA dgt dgt hpt hpt purT purT APG50951.1 APG50951.1 surE surE ispF ispF ispD ispD ygaD ygaD aas aas gpt gpt gmhA gmhA yqgE yqgE rdgB rdgB fbaA fbaA pgk pgk epd epd tktA tktA tesB tesB thiI thiI dxs dxs thiL thiL cpdB_1 cpdB_1 carB carB carA carA APG51298.1 APG51298.1 APG51299.1 APG51299.1 APG51306.1 APG51306.1 ispH ispH ribF ribF mog mog talB talB cobC cobC yjjX yjjX nadR nadR deoB deoB deoC deoC idi idi udp udp hisN hisN deoC2 deoC2 moaF_2 moaF_2 arnT_2 arnT_2 nadC_2 nadC_2 dgkA dgkA plsB plsB pgi pgi purH purH purD purD nudC nudC APG51553.1 APG51553.1 thiC thiC thiE thiE thiF thiF thiS thiS thiG thiG kbaY kbaY kbaZ kbaZ mobA mobA mobB mobB gmk gmk spoT spoT glpD glpD zwf_2 zwf_2 gnd_2 gnd_2 suhB_2-2 suhB_2-2 spaL spaL lsrF lsrF APG51811.1 APG51811.1 nudE nudE rpe_2 rpe_2 acs acs atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG atpD atpD atpC atpC glmU glmU citE_2 citE_2 fdhD fdhD thiM thiM pyrE pyrE dut dut coaBC coaBC coaD coaD gpsA gpsA odh odh APG51994.1 APG51994.1 cdsA_2 cdsA_2 pfkA pfkA tpiA tpiA glpK glpK coaA coaA gppA gppA APG52122.1 APG52122.1 psd psd purA purA cysQ cysQ nudK nudK APG52223.1 APG52223.1 pyrI pyrI pyrB pyrB cpdB_2 cpdB_2 APG52273.1 APG52273.1 yfaY yfaY glpA glpA glpB glpB APG52388.1 APG52388.1 accC_2 accC_2 yhdE yhdE plsY plsY nudF nudF plsC plsC pdxA pdxA thyA thyA pyrH pyrH dxr dxr cdsA_2-2 cdsA_2-2 lpxD lpxD fabZ fabZ lpxA lpxA lpxB lpxB accA_2 accA_2 pssA pssA nrdF2 nrdF2 nadD nadD corC corC APG52781.1 APG52781.1 sucB sucB nadA nadA gpmA gpmA yidA_2 yidA_2 pgl pgl moaA moaA moaC moaC moaD moaD moaE moaE moeB_1 moeB_1 folE folE udk_2 udk_2 dcd dcd gnd_2-2 gnd_2-2 grxA grxA cmk cmk lpxK lpxK pncB pncB pyrD pyrD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
udk_1Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (214 aa)
APG49435.1acyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (134 aa)
htrB_2Lipid A biosynthesis lauroyl acyltransferase; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)-(lauroyl)-lipid IV(A). (314 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (349 aa)
rpe_1Epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa)
fliIFlagellar protein export ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa)
citFCitrate lyase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (508 aa)
citE_1Citrate (pro-3S)-lyase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family. (298 aa)
citDCitrate lyase acyl carrier protein; Covalent carrier of the coenzyme of citrate lyase. (98 aa)
pgsACDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (182 aa)
nadXAspartate dehydrogenase; Specifically catalyzes the NAD or NADP-dependent dehydrogenation of L-aspartate to iminoaspartate. (264 aa)
arnB_1UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase; Catalyzes the conversion of UDP-4-keto-arabinose (UDP-Ara4O) to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; Belongs to the DegT/DnrJ/EryC1 family. ArnB subfamily. (381 aa)
arnCUndecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase; Catalyzes the transfer of 4-deoxy-4-formamido-L-arabinose from UDP to undecaprenyl phosphate. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. (330 aa)
arnABifunctional UDP-glucuronic acid oxidase/UDP-4-amino-4-deoxy-L-arabinose formyltransferase; Bifunctional enzyme that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and the addition of a formyl group to UDP-4- amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; In the N-terminal section; belongs to the Fmt family. UDP- L-Ara4N formyltransferase subfamily. (660 aa)
arnD4-deoxy-4-formamido-L-arabinose- phosphoundecaprenol deformylase; Catalyzes the deformylation of 4-deoxy-4-formamido-L- arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose- phosphoundecaprenol. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; Belongs to the polysaccharide deacetylase family. ArnD deformylase subfamily. (297 aa)
arnT_14-amino-4-deoxy-L-arabinose lipid A transferase; Catalyzes the transfer of the L-Ara4N moiety of the glycolipid undecaprenyl phosphate-alpha-L-Ara4N to lipid A. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. Belongs to the glycosyltransferase 83 family. (552 aa)
arnE4-amino-4-deoxy-L-arabinose-phospho-UDP flippase; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane; Belongs to the ArnE family. (115 aa)
arnF4-amino-4-deoxy-L-arabinose-phospho-UDP flippase; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane; Belongs to the ArnF family. (133 aa)
pykFPyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (470 aa)
purR_1Transcriptional repressor PurR; Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression. (341 aa)
pdxHPyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (217 aa)
pdxYPyridoxal kinase; Pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP). Catalyzes the phosphorylation of pyridoxal to PLP. (287 aa)
uspG_2Glyoxalase; Internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (142 aa)
uspG_2-2Universal stress protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (145 aa)
APG49787.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (420 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (312 aa)
ispE4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol; Belongs to the GHMP kinase family. IspE subfamily. (291 aa)
ynbAHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
msbBLipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. (324 aa)
pykAPyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (480 aa)
zwf_1Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (491 aa)
pdxKPyridoxal kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyridoxine kinase family. (282 aa)
amnAMP nucleosidase; Catalyzes the hydrolysis of the N-glycosidic bond of AMP to form adenine and ribose 5-phosphate. Involved in regulation of AMP concentrations. (488 aa)
accA_1acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa)
APG49922.1Adenylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa)
APG49966.1Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (140 aa)
APG49982.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
APG50012.1AAA family ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (164 aa)
addAdenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (333 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (245 aa)
pgpBDerived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
APG50071.1acyl-CoA esterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (138 aa)
clsCardiolipin synthase; Catalyzes the reversible phosphatidyl group transfer from one phosphatidylglycerol molecule to another to form cardiolipin (CL) (diphosphatidylglycerol) and glycerol. (486 aa)
tdkThymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa)
purUFormyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (282 aa)
APG50095.1Nicotinamidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa)
nnrNAD(P)H-hydrate dehydratase; Catalyzes the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. Together with NAD(P)HX epimerase, which catalyzes the epimerization of the S-and R-forms, the enzyme allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. (285 aa)
APG50129.1CoA pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Nudix hydrolase family. PCD1 subfamily. (186 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (525 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (237 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (208 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (211 aa)
ppkRNA degradosome polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family. (689 aa)
yegSLipid kinase YegS; Probably phosphorylates lipids; the in vivo substrate is unknown; Belongs to the diacylglycerol/lipid kinase family. YegS lipid kinase subfamily. (301 aa)
fbaBFructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa)
thiDBifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (265 aa)
pagPPhospholipid:lipid A palmitoyltransferase; Transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A or its precursors. (191 aa)
APG50222.1MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (280 aa)
purB_1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)
thiKThiamine kinase; Catalyzes the phosphorylation of thiamine to thiamine phosphate. (286 aa)
tmkdTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (208 aa)
plsXPhosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (338 aa)
mafSeptum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes 7- methyl-GTP (m(7)GTP). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids; Belongs to the Maf family. YceF subfamily. (194 aa)
nrdBRibonucleotide-diphosphate reductase subunit beta; B2 or R2 protein; type 1a enzyme; catalyzes the rate-limiting step in dNTP synthesis; converts nucleotides to deoxynucleotides; forms a homodimer and then a multimeric complex with NrdA; Derived by automated computational analysis using gene prediction method: Protein Homology. (378 aa)
yfbR_15'-deoxynucleotidase; Catalyzes the strictly specific dephosphorylation of 2'- deoxyribonucleoside 5'-monophosphates. (193 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (400 aa)
ptaPhosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa)
yfcDNUDIX hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (180 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa)
accDacetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (327 aa)
moaF_1Molybdenum cofactor biosynthesis protein F; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
ispG4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (By similarity). Involved in density-dependent regulation of 2'-N- acetyltransferase. (373 aa)
ndkNucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (141 aa)
suhB_2Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (267 aa)
nadENAD+ synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. (540 aa)
nadBL-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (533 aa)
ppnKNAD(+) kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (299 aa)
APG50656.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (119 aa)
APG50669.1Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa)
rpiARibose 5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (218 aa)
APG50696.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (116 aa)
aceFPyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (623 aa)
aceEPyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (888 aa)
nadC_1Nicotinate-nucleotide diphosphorylase; Catalyzes the formation of pyridine-2,3-dicarboxylate and 5-phospho-alpha-D-ribose 1-diphosphate from nictinate D-ribonucleotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (299 aa)
coaEdephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (201 aa)
lpxCUDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis; Belongs to the LpxC family. (305 aa)
napANitrate reductase catalytic subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite. (828 aa)
htrB_1Lipid A biosynthesis palmitoleoyl acyltransferase; Catalyzes the transfer of palmitoleate from palmitoleoyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)- (palmitoleoyl)-lipid IV(A); Belongs to the LpxL/LpxM/LpxP family. LpxP subfamily. (307 aa)
folDBifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (285 aa)
lpxHUDP-2,3-diacylglucosamine diphosphatase; Hydrolyzes the pyrophosphate bond of UDP-2,3- diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP by catalyzing the attack of water at the alpha-P atom. Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (249 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (171 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (360 aa)
APG50837.1Glycerophosphodiester phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa)
ushABifunctional UDP-sugar hydrolase/5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (555 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (183 aa)
enoPhosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (433 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
mazGNucleoside triphosphate pyrophosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
relAGTP diphosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (745 aa)
dgtdGTPase; dGTPase preferentially hydrolyzes dGTP over the other canonical NTPs; Belongs to the dGTPase family. Type 1 subfamily. (507 aa)
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (178 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (392 aa)
APG50951.16-phosphogluconolactonase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa)
surE5'/3'-nucleotidase SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. (253 aa)
ispF2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (170 aa)
ispD2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). Belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily. (240 aa)
ygaDHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (167 aa)
aasBifunctional 2-acylglycerophosphoethanolamine acyltransferase/acyl-ACP synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1; In the C-terminal section; belongs to the ATP-dependent AMP-binding enzyme family. (714 aa)
gptXanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (154 aa)
gmhAPhosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. (192 aa)
yqgEHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (186 aa)
rdgBNon-canonical purine NTP pyrophosphatase, RdgB/HAM1 family; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (197 aa)
fbaAClass II fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (358 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (387 aa)
epdErythrose-4-phosphate dehydrogenase; Catalyzes the NAD-dependent conversion of D-erythrose 4- phosphate to 4-phosphoerythronate. (339 aa)
tktATransketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (664 aa)
tesBacyl-CoA thioesterase II; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa)
thiItRNA 4-thiouridine(8) synthase ThiI; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (483 aa)
dxs1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (622 aa)
thiLThiamine-phosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (329 aa)
cpdB_12',3'-cyclic-nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (649 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1073 aa)
carACarbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (387 aa)
APG51298.1Adenine/guanine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa)
APG51299.1Carbamoyl-phosphate synthase large chain; Derived by automated computational analysis using gene prediction method: Protein Homology. (355 aa)
APG51306.1HAD family hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (219 aa)
ispH4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. (317 aa)
ribFRiboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (312 aa)
mogMolybdopterin adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa)
talBTransaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa)
cobCPhosphoglycerate mutase; Catalyzes reactions involving the transfer of phospho groups between the three carbon atoms of phosphoglycerate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (215 aa)
yjjXInosine/xanthosine triphosphatase; Phosphatase that hydrolyzes non-canonical purine nucleotides such as XTP and ITP to their respective diphosphate derivatives. Probably excludes non-canonical purines from DNA/RNA precursor pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. (178 aa)
nadRTrifunctional NAD biosynthesis/regulator protein NadR; Catalyzes the formation of NAD(+) from nicotinamide ribonucleotide; catalyzes the formation of nicotinamide mononucleotide from nicotinamide riboside; also has a regulatory function; Derived by automated computational analysis using gene prediction method: Protein Homology. (410 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (407 aa)
deoCDeoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 2 subfamily. (259 aa)
idiIsopentenyl-diphosphate delta-isomerase; Catalyzes the 1,3-allylic rearrangement of the homoallylic substrate isopentenyl (IPP) to its highly electrophilic allylic isomer, dimethylallyl diphosphate (DMAPP). (171 aa)
udpUridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1-phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the PNP/UDP phosphorylase family. (251 aa)
hisNHistidinol-phosphate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
deoC2Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily. (222 aa)
moaF_2Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa)
arnT_24-amino-4-deoxy-L-arabinose lipid A transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa)
nadC_2ModD protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (281 aa)
dgkADiacylglycerol kinase; Recycling of diacylglycerol produced during the turnover of membrane phospholipid. (124 aa)
plsBGlycerol-3-phosphate 1-O-acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family. (822 aa)
pgiGlucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (548 aa)
purHBifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (529 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa)
nudCNADH pyrophosphatase; Can catalyze hydrolysis of broad range of dinucleotide pyrophosphates but prefers reduced form of NADH; requires divalent metal ions such as magnesium and manganese and produces two mononucleoside 5'-phosphates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Nudix hydrolase family. NudC subfamily. (259 aa)
APG51553.1HAD family hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (220 aa)
thiCPhosphomethylpyrimidine synthase ThiC; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (649 aa)
thiEThiamine-phosphate diphosphorylase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family. (212 aa)
thiFMolybdopterin-synthase adenylyltransferase MoeB; Derived by automated computational analysis using gene prediction method: Protein Homology. (252 aa)
thiSSulfur carrier protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa)
thiGThiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S. (256 aa)
kbaYClass II aldolase, tagatose bisphosphate family; Derived by automated computational analysis using gene prediction method: Protein Homology. (284 aa)
kbaZD-tagatose-bisphosphate aldolase, class II, non-catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (431 aa)
mobAMolybdenum cofactor guanylyltransferase MobA; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor; Belongs to the MobA family. (195 aa)
mobBMolybdopterin-guanine dinucleotide biosynthesis protein B; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa)
spoTBifunctional GTP diphosphokinase/guanosine-3',5'-bis(diphosphate) 3'-diphosphatase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (705 aa)
glpDGlycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family. (502 aa)
zwf_2Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (480 aa)
gnd_26-phosphogluconate dehydrogenase (decarboxylating); Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)
suhB_2-2Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (264 aa)
spaLEscN/YscN/HrcN family type III secretion system ATPase; Invasion protein InvC; necessary for efficient entry of S.typhimurium into cultured epithelial cells; probable catalytic subunit of a protein translocase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
lsrFPhospho-2-dehydro-3-deoxyheptonate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
APG51811.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa)
nudEADP compounds hydrolase NudE; Derived by automated computational analysis using gene prediction method: Protein Homology. (183 aa)
rpe_2Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (224 aa)
acsacetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. Enables the cell to use acetate during aerobic growth to generate energy via the TCA cycle, and biosynthetic compounds via the glyoxylate shunt. Acetylates [...] (651 aa)
atpBF0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (272 aa)
atpEATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (77 aa)
atpFF0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa)
atpHF0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (177 aa)
atpAF0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa)
atpGF0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa)
atpDF0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (460 aa)
atpCF0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (141 aa)
glmUUDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (456 aa)
citE_2Citrate lyase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family. (276 aa)
fdhDSufurtransferase FdhD; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family. (276 aa)
thiMHydroxyethylthiazole kinase; Catalyzes the phosphorylation of the hydroxyl group of 4- methyl-5-beta-hydroxyethylthiazole (THZ); Belongs to the Thz kinase family. (256 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (151 aa)
coaBCBifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (401 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (161 aa)
gpsAGlycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (342 aa)
odhHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (358 aa)
APG51994.1Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa)
cdsA_2Phosphatidate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa)
pfkA6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (325 aa)
tpiATriose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (256 aa)
glpKGlycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate. (508 aa)
coaAType I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa)
gppAGuanosine-5'-triphosphate,3'-diphosphate pyrophosphatase; Catalyzes the conversion of pppGpp to ppGpp. Guanosine pentaphosphate (pppGpp) is a cytoplasmic signaling molecule which together with ppGpp controls the 'stringent response', an adaptive process that allows bacteria to respond to amino acid starvation, resulting in the coordinated regulation of numerous cellular activities. (501 aa)
APG52122.1Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the adenylyl cyclase class-1 family. (856 aa)
psdPhosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (318 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (433 aa)
cysQ3'(2'),5'-bisphosphate nucleotidase CysQ; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (246 aa)
nudKGDP-mannose pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa)
APG52223.1Anaerobic ribonucleotide reductase-activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine. (154 aa)
pyrIAspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (154 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (311 aa)
cpdB_2Bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (625 aa)
APG52273.1DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1169 aa)
yfaYCompetence/damage-inducible protein A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (399 aa)
glpASn-glycerol-3-phosphate dehydrogenase subunit A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family. (551 aa)
glpBAnaerobic glycerol-3-phosphate dehydrogenase subunit B; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor. (431 aa)
APG52388.1Lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (128 aa)
accC_2Hypothetical protein; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (448 aa)
yhdESeptum formation inhibitor Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (195 aa)
plsYGlycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (218 aa)
nudFADP-ribose diphosphatase; ADP-sugar pyrophosphatase; catalyzes the formation of D-ribose 5-phosphate from ADP-ribose; can also act on ADP-mannose and ADP-glucose; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa)
plsCCatalyzes the formation of 1,2-diacyl-sn-glycerol 3-phosphate from 1-acyl-sn-glycerol 3-phosphate using either acyl-CoA or acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family. (244 aa)
pdxA4-hydroxythreonine-4-phosphate dehydrogenase PdxA; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP). (331 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (283 aa)
pyrHUMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (242 aa)
dxr1-deoxy-D-xylulose-5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP). (399 aa)
cdsA_2-2CDP-diglyceride synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (287 aa)
lpxDUDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; Catalyzes the N-acylation of UDP-3-O- (hydroxytetradecanoyl)glucosamine using 3-hydroxytetradecanoyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell; Belongs to the transferase hexapeptide repeat family. LpxD subfamily. (345 aa)
fabZ3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (150 aa)
lpxAacyl-[acyl-carrier-protein]--UDP-N- acetylglucosamine O-acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (265 aa)
lpxBlipid-A-disaccharide synthase; Condensation of UDP-2,3-diacylglucosamine and 2,3- diacylglucosamine-1-phosphate to form lipid A disaccharide, a precursor of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (384 aa)
accA_2acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa)
pssACatalyzes de novo synthesis of phosphatidylserine from CDP-diacylglycerol and L-serine which leads eventually to the production of phosphatidylethanolamine; bounds to the ribosome; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa)
nrdF2Class 1b ribonucleoside-diphosphate reductase subunit beta; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (323 aa)
nadDNicotinic acid mononucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (218 aa)
corCMagnesium/cobalt efflux protein; Involved in the transport of magnesium and cobalt ions; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa)
APG52781.1Glycerol acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (358 aa)
sucBDihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (404 aa)
nadAQuinolinate synthase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate; Belongs to the quinolinate synthase A family. Type 1 subfamily. (346 aa)
gpmAPhosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa)
yidA_2Pyridoxal phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (272 aa)
pgl6-phosphogluconolactonase; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa)
moaACyclic pyranopterin phosphate synthase; Together with moaC, is involved in the conversion of a guanosine derivative (GXP) into molybdopterin precursor Z; Derived by automated computational analysis using gene prediction method: Protein Homology. (326 aa)
moaCMolybdenum cofactor biosynthesis protein C; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. (159 aa)
moaDMolybdopterin synthase sulfur carrier subunit; Catalyzes the conversion of molybdopterin precursor Z into molybdopterin; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa)
moaEMolybdenum cofactor biosynthesis protein MoaE; Catalyzes the conversion of molybdopterin precursor Z into molybdopterin; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa)
moeB_1Molybdopterin-synthase adenylyltransferase MoeB; Derived by automated computational analysis using gene prediction method: Protein Homology. (252 aa)
folEGTP cyclohydrolase I FolE; Derived by automated computational analysis using gene prediction method: Protein Homology. (219 aa)
udk_2Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (69 aa)
dcddCTP deaminase; Catalyzes the deamination of dCTP to dUTP. (193 aa)
gnd_2-2Phosphogluconate dehydrogenase (NADP(+)-dependent, decarboxylating); Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa)
grxAGlutaredoxin; Functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase; also involved in reducing some disulfides in a coupled system with glutathione reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa)
cmkCytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (227 aa)
lpxKTetraacyldisaccharide 4'-kinase; Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA). (332 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (404 aa)
pyrDDihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa)
Your Current Organism:
Providencia stuartii
NCBI taxonomy Id: 588
Other names: ATCC 29914, CCUG 14805, CDC 2896-68, CIP 104687, DSM 4539, LMG 3260, LMG:3260, NCTC 11800, P. stuartii, Proteus stuartii
Server load: low (12%) [HD]