Your Input: | |||||
nuoL | NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (618 aa) | ||||
nuoM | NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
nuoN | NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (487 aa) | ||||
dmsC_1 | Diguanylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (258 aa) | ||||
dld | D-lactate dehydrogenase; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (577 aa) | ||||
cydA_1 | Cytochrome D ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (445 aa) | ||||
fdnI | Formate dehydrogenase subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa) | ||||
APG52912.1 | Reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (300 aa) | ||||
ybgT | Cyd operon protein YbgT; Derived by automated computational analysis using gene prediction method: Protein Homology. (37 aa) | ||||
cydA_2 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (522 aa) | ||||
APG52402.1 | Electron transfer flavoprotein-ubiquinone oxidoreductase; Accepts electrons from ETF and reduces ubiquinone. (560 aa) | ||||
dmsC_2 | Dimethylsulfoxide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (285 aa) | ||||
fdoI | Formate dehydrogenase cytochrome b556 subunit; Cytochrome b556(FDO) component; heme containing; Derived by automated computational analysis using gene prediction method: Protein Homology. (216 aa) | ||||
cyoC | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa) | ||||
nqrB_1 | NADH:ubiquinone reductase (Na(+)-transporting) subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (412 aa) | ||||
nqrE | NADH:ubiquinone reductase (Na(+)-transporting) subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (198 aa) | ||||
yceJ | Derived by automated computational analysis using gene prediction method: Protein Homology. (185 aa) | ||||
nuoC | NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (598 aa) | ||||
nuoE | NADH-quinone oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology. (180 aa) | ||||
nuoG | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (910 aa) | ||||
nuoK | NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) |