Your Input: | |||||
purK | Phosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (365 aa) | ||||
purE | N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (163 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (196 aa) | ||||
purC | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (770 aa) | ||||
purM | Phosphoribosylaminoimidazole synthetase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa) | ||||
folD | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (292 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (176 aa) | ||||
AJC48362.1 | Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (448 aa) | ||||
AJC49519.1 | Orotidine 5'-phosphate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa) | ||||
AJC48364.1 | Diguanylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the dihydroorotate dehydrogenase family. (246 aa) | ||||
AJC49521.1 | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. (306 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1093 aa) | ||||
carA | Carbamoyl-phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (389 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (495 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1310 aa) | ||||
AJC48478.1 | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (432 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (515 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (426 aa) | ||||
AJC48534.1 | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (177 aa) | ||||
AJC48551.1 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (178 aa) | ||||
AJC48594.1 | Folylpolyglutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (392 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (312 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (190 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (274 aa) | ||||
guaA | GMP synthase; Catalyzes the synthesis of GMP from XMP. (516 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (208 aa) | ||||
guaB | Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (486 aa) | ||||
AJC49372.1 | Nucleoside-triphosphate diphosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (198 aa) |