Your Input: | |||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (184 aa) | ||||
NAMH_0070 | Protein-export membrane protein SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (107 aa) | ||||
rnc | Ribonuclease III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (226 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (461 aa) | ||||
tuf | Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (399 aa) | ||||
rpmG | Ribosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (50 aa) | ||||
secE | Preprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (62 aa) | ||||
nusG | Transcription termination/antitermination factor NusG; Participates in transcription elongation, termination and antitermination. (174 aa) | ||||
rplK | Ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
rplA | Ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (233 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (159 aa) | ||||
rplL | Ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa) | ||||
rpoB | DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1379 aa) | ||||
rpoC | DNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1500 aa) | ||||
rpsL | Ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (127 aa) | ||||
rpsG | Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (155 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (693 aa) | ||||
rpsU | Ribosomal protein S21; Identified by match to protein family HMM PF01165; match to protein family HMM TIGR00030; Belongs to the bacterial ribosomal protein bS21 family. (70 aa) | ||||
nusA | Transcription termination factor NusA; Participates in both transcription termination and antitermination. (357 aa) | ||||
atpF | Putative H+-transporting two-sector ATPase, B/B' subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (141 aa) | ||||
atpF-2 | ATP synthase B chain; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (167 aa) | ||||
NAMH_0319 | Putative ATP synthase F1, delta subunit. (171 aa) | ||||
atpA | ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (499 aa) | ||||
atpG | ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (292 aa) | ||||
atpD | ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (468 aa) | ||||
atpC | ATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (126 aa) | ||||
greA | Transcription elongation factor grea transcript cleavage factorgrea; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (162 aa) | ||||
hisS | histidyl-tRNA synthetase; Identified by match to protein family HMM PF00587; match to protein family HMM TIGR00442. (386 aa) | ||||
rplT | Ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (116 aa) | ||||
rpmI | Ribosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
rpmF | Ribosomal protein L32; Identified by match to protein family HMM PF01783; match to protein family HMM TIGR01031; Belongs to the bacterial ribosomal protein bL32 family. (49 aa) | ||||
NAMH_0426 | Conserved hypothetical protein. (109 aa) | ||||
NAMH_0427 | Nucleoside diphosphate kinase; An automated process has identified a potential problem with this gene model; the current end5 and/or the end3 may need to extended or the current gene model may need to be merged with a neighboring gene model; the current gene model (or a revised gene model) may contain a frame shift. (38 aa) | ||||
rpsB | Ribosomal protein S2; Identified by match to protein family HMM PF00318; match to protein family HMM TIGR01011; Belongs to the universal ribosomal protein uS2 family. (279 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (307 aa) | ||||
argS | arginyl-tRNA synthetase; Identified by match to protein family HMM PF00750; match to protein family HMM PF01406; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM PF09334; match to protein family HMM TIGR00456. (532 aa) | ||||
rsfS | Iojap-related protein; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (108 aa) | ||||
nadD | Nicotinate (nicotinamide) nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (178 aa) | ||||
NAMH_0472 | 23S rRNA methyltransferase; Identified by match to protein family HMM PF00588; match to protein family HMM PF08032; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (221 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (417 aa) | ||||
rpoZ | RNA polymerases K / 14 to 18 kDa subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (67 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (239 aa) | ||||
NAMH_0515 | Ribosomal large subunit pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (311 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (441 aa) | ||||
NAMH_0626 | Conserved hypothetical protein; Identified by match to protein family HMM PF01709; match to protein family HMM TIGR01033. (238 aa) | ||||
gltX-2 | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (434 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (911 aa) | ||||
gatA | glutamyl-tRNA(Gln) amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (451 aa) | ||||
NAMH_0726 | Modification methylase, HemK family; Identified by match to protein family HMM PF05175; match to protein family HMM TIGR00536. (257 aa) | ||||
glyS | glycyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF02092; match to protein family HMM PF05746; match to protein family HMM TIGR00211. (657 aa) | ||||
NAMH_0838 | Sigma 54 modulation protein/ribosomal protein S30EA; Identified by match to protein family HMM PF02482; match to protein family HMM TIGR00741. (166 aa) | ||||
rpmH | Ribosomal protein L34; Identified by match to protein family HMM PF00468; match to protein family HMM TIGR01030; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
NAMH_0858 | Polyribonucleotide nucleotidyltransferase; An automated process has identified a potential problem with this gene model; the current end5 and/or the end3 may need to extended or the current gene model may need to be merged with a neighboring gene model; the current gene model (or a revised gene model) may contain a frame shift; identified by match to protein family HMM PF01138; match to protein family HMM PF03726. (451 aa) | ||||
rpsO | Ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (91 aa) | ||||
lysS | lysyl-tRNA synthetase; Identified by match to protein family HMM PF00152; match to protein family HMM PF01336; match to protein family HMM TIGR00499; Belongs to the class-II aminoacyl-tRNA synthetase family. (502 aa) | ||||
pheS | phenylalanyl-tRNA synthetase, alpha subunit; Identified by match to protein family HMM PF01409; match to protein family HMM PF02912; match to protein family HMM TIGR00468; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (328 aa) | ||||
pheT | phenylalanyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF01588; match to protein family HMM PF03147; match to protein family HMM PF03484; match to protein family HMM TIGR00472; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (749 aa) | ||||
NAMH_0911 | 30S ribosomal protein S1; Identified by match to protein family HMM PF00575. (386 aa) | ||||
efp | Translation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa) | ||||
ychF | GTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (364 aa) | ||||
NAMH_0997 | Conserved hypothetical protein; Identified by match to protein family HMM PF01161; match to protein family HMM TIGR00481. (167 aa) | ||||
ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (172 aa) | ||||
atpE | ATP synthase C chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (101 aa) | ||||
aspS | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (588 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (574 aa) | ||||
gatB | aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (474 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (179 aa) | ||||
rplY | Ribosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (178 aa) | ||||
tatA | Component of Sec-independent protein secretion pathway TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (75 aa) | ||||
tatC | Twin arginine-targeting protein translocase TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides. (242 aa) | ||||
truD | tRNA pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs; Belongs to the pseudouridine synthase TruD family. (358 aa) | ||||
NAMH_1140 | Peptidyl-prolyl cis-trans isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. (174 aa) | ||||
gatC | glutamyl-tRNA(Gln) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (93 aa) | ||||
NAMH_1178 | Hypothetical protein; Identified by glimmer; putative. (504 aa) | ||||
engB | GTP-binding protein; Necessary for normal cell division and for the maintenance of normal septation; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngB GTPase family. (189 aa) | ||||
NAMH_1217 | Putative oxygen-independent coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (365 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (635 aa) | ||||
era | GTP-binding protein Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (293 aa) | ||||
rplI | Ribosomal protein L9; Binds to the 23S rRNA. (146 aa) | ||||
rpmE | Ribosomal protein L31; Binds the 23S rRNA. (66 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (594 aa) | ||||
NAMH_1332 | Hypothetical protein; Identified by glimmer; putative. (188 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (611 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (178 aa) | ||||
rpsR | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (94 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (111 aa) | ||||
rpsT | Ribosomal protein S20; Binds directly to 16S ribosomal RNA. (90 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (355 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (151 aa) | ||||
obg | GTP-binding protein Obg/CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (357 aa) | ||||
rpmA | Ribosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family. (87 aa) | ||||
rplU | Ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
rpsI | Ribosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family. (132 aa) | ||||
rplM | Ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (140 aa) | ||||
glyQ | glycyl-tRNA synthetase, alpha subunit; Identified by match to protein family HMM PF02091; match to protein family HMM TIGR00388. (280 aa) | ||||
atpB | ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (227 aa) | ||||
yajC | Preprotein translocase, YajC subunit; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (102 aa) | ||||
secD | Protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (518 aa) | ||||
secF | Protein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (323 aa) | ||||
leuS | leucyl-tRNA synthetase; Identified by match to protein family HMM PF00133; match to protein family HMM PF09334; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family. (819 aa) | ||||
rplS | Ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (219 aa) | ||||
rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (173 aa) | ||||
rpsP | Ribosomal protein S16; Identified by match to protein family HMM PF00886; match to protein family HMM TIGR00002; Belongs to the bacterial ribosomal protein bS16 family. (81 aa) | ||||
ffh | Signal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual componen [...] (449 aa) | ||||
NAMH_1515 | Ribosomal pseudouridine synthase; Identified by match to protein family HMM PF00849. (253 aa) | ||||
ftsY | Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (289 aa) | ||||
NAMH_1555 | ATP-dependent RNA helicase DeaD; Identified by match to protein family HMM PF00270; match to protein family HMM PF00271; match to protein family HMM PF04851; Belongs to the DEAD box helicase family. (467 aa) | ||||
rpmB | Ribosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (61 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
map | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (252 aa) | ||||
secY | Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (419 aa) | ||||
rplO | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (130 aa) | ||||
rpsE | Ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (158 aa) | ||||
rplR | Ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (121 aa) | ||||
rplF | 50s ribosomal protein l6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (178 aa) | ||||
rpsH | Ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa) | ||||
rpsN | Ribosomal protein S14p/S29e; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (181 aa) | ||||
rplX | Ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (83 aa) | ||||
rplN | Ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rpsQ | Ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (81 aa) | ||||
rpmC | Ribosomal protein L29; Identified by match to protein family HMM PF00831; match to protein family HMM TIGR00012; Belongs to the universal ribosomal protein uL29 family. (68 aa) | ||||
rplP | Ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (141 aa) | ||||
rpsC | Ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (240 aa) | ||||
rplV | Ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (106 aa) | ||||
rpsS | Ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa) | ||||
rplB | Ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa) | ||||
rplW | Ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (93 aa) | ||||
rplD | Ribosomal protein L4/L1 family; Forms part of the polypeptide exit tunnel. (193 aa) | ||||
rplC | Ribosomal protein L3; Identified by match to protein family HMM PF00297. (191 aa) | ||||
rpsJ | Ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa) | ||||
NAMH_1683 | tRNA synthetase, class II; Identified by match to protein family HMM PF00587. (271 aa) | ||||
rplQ | Ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059. (122 aa) | ||||
rpoA | DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (330 aa) | ||||
rpsD | Ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (208 aa) | ||||
rpsK | Ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (130 aa) | ||||
rpsM | Ribosomal protein S13p/S18e; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (122 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (428 aa) | ||||
tatB | Twin arginine-targeting protein translocase TatB; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatC, TatB is part of a receptor directly interacting with Tat signal peptides. TatB may form an oligomeric binding site that transiently accommodates folded Tat precursor proteins before their translocation. (108 aa) | ||||
NAMH_1765 | Ribosomal large subunit pseudouridine synthase C; Identified by match to protein family HMM PF00849; match to protein family HMM PF01479. (294 aa) | ||||
trmH | tRNA guanosine-2'-O-methyltransferase; Catalyzes the 2'-O methylation of guanosine at position 18 in tRNA; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (209 aa) |