node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
T24H10.1 | ama-1 | T24H10.1.1 | F36A4.7.2 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | 0.998 |
T24H10.1 | rpb-10 | T24H10.1.1 | Y37E3.3.1 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | DNA-directed RNA polymerases I, II, and III subunit RPABC5; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the cor [...] | 0.956 |
T24H10.1 | rpb-11 | T24H10.1.1 | W01G7.3.2 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | Probable DNA-directed RNA polymerase II subunit RPB11; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity). | 0.980 |
T24H10.1 | rpb-2 | T24H10.1.1 | C26E6.4.1 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | DNA-directed RNA polymerase II subunit RPB2; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB2 is [...] | 0.998 |
T24H10.1 | rpb-5 | T24H10.1.1 | H27M09.2.1 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | DNA-directed RNA polymerases I, II, and III subunit RPABC1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower [...] | 0.992 |
T24H10.1 | rpb-7 | T24H10.1.1 | Y54E10BR.6.1 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | S1 motif domain-containing protein. | 0.963 |
T24H10.1 | spt-4 | T24H10.1.1 | F54C4.2.1 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | Transcription elongation factor SPT4; May function as a component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates transcription elongation by RNA polymerase II. DSIF may enhance transcriptional pausing at sites proximal to the promoter, which may in turn facilitate the assembly of an elongation competent RNA polymerase II complex. | 0.993 |
T24H10.1 | spt-5 | T24H10.1.1 | K08E4.1.2 | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | Transcription elongation factor SPT5; May function as a component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates transcription elongation by RNA polymerase II. DSIF may enhance transcriptional pausing at sites proximal to the promoter, which may in turn facilitate the assembly of an elongation competent RNA polymerase II complex. Belongs to the SPT5 family. | 0.997 |
ama-1 | T24H10.1 | F36A4.7.2 | T24H10.1.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | Putative transcription elongation factor S-II; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus (By similarity). Belongs to the TFS-II family. | 0.998 |
ama-1 | ncbp-2 | F36A4.7.2 | F26A3.2a.2 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | Nuclear cap-binding protein subunit 2; Component of the cap-binding complex (CBC), which binds co- transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing and RNA-mediated gene silencing (RNAi). The CBC complex is involved in miRNA-mediated RNA interference and is required for primary microRNAs (miRNAs) processing. In the CBC complex, ncbp-2 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires ncbp-1 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap stru [...] | 0.593 |
ama-1 | rpb-10 | F36A4.7.2 | Y37E3.3.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | DNA-directed RNA polymerases I, II, and III subunit RPABC5; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the cor [...] | 0.999 |
ama-1 | rpb-11 | F36A4.7.2 | W01G7.3.2 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | Probable DNA-directed RNA polymerase II subunit RPB11; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity). | 0.999 |
ama-1 | rpb-2 | F36A4.7.2 | C26E6.4.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | DNA-directed RNA polymerase II subunit RPB2; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB2 is [...] | 0.999 |
ama-1 | rpb-5 | F36A4.7.2 | H27M09.2.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | DNA-directed RNA polymerases I, II, and III subunit RPABC1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower [...] | 0.999 |
ama-1 | rpb-7 | F36A4.7.2 | Y54E10BR.6.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | S1 motif domain-containing protein. | 0.999 |
ama-1 | spt-4 | F36A4.7.2 | F54C4.2.1 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | Transcription elongation factor SPT4; May function as a component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates transcription elongation by RNA polymerase II. DSIF may enhance transcriptional pausing at sites proximal to the promoter, which may in turn facilitate the assembly of an elongation competent RNA polymerase II complex. | 0.998 |
ama-1 | spt-5 | F36A4.7.2 | K08E4.1.2 | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | Transcription elongation factor SPT5; May function as a component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates transcription elongation by RNA polymerase II. DSIF may enhance transcriptional pausing at sites proximal to the promoter, which may in turn facilitate the assembly of an elongation competent RNA polymerase II complex. Belongs to the SPT5 family. | 0.997 |
ncbp-2 | ama-1 | F26A3.2a.2 | F36A4.7.2 | Nuclear cap-binding protein subunit 2; Component of the cap-binding complex (CBC), which binds co- transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing and RNA-mediated gene silencing (RNAi). The CBC complex is involved in miRNA-mediated RNA interference and is required for primary microRNAs (miRNAs) processing. In the CBC complex, ncbp-2 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires ncbp-1 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap stru [...] | DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] | 0.593 |
ncbp-2 | rpb-10 | F26A3.2a.2 | Y37E3.3.1 | Nuclear cap-binding protein subunit 2; Component of the cap-binding complex (CBC), which binds co- transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing and RNA-mediated gene silencing (RNAi). The CBC complex is involved in miRNA-mediated RNA interference and is required for primary microRNAs (miRNAs) processing. In the CBC complex, ncbp-2 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires ncbp-1 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap stru [...] | DNA-directed RNA polymerases I, II, and III subunit RPABC5; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the cor [...] | 0.589 |
ncbp-2 | rpb-11 | F26A3.2a.2 | W01G7.3.2 | Nuclear cap-binding protein subunit 2; Component of the cap-binding complex (CBC), which binds co- transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing and RNA-mediated gene silencing (RNAi). The CBC complex is involved in miRNA-mediated RNA interference and is required for primary microRNAs (miRNAs) processing. In the CBC complex, ncbp-2 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires ncbp-1 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap stru [...] | Probable DNA-directed RNA polymerase II subunit RPB11; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity). | 0.625 |