STRINGSTRING
nuoB nuoB nuoE nuoE nuoG nuoG nuoH nuoH nuoI nuoI nuoK nuoK nuoJ nuoJ nuoL nuoL nuoM nuoM SVI_3232 SVI_3232 nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nuoBNADH dehydrogenase I, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (219 aa)
nuoENADH dehydrogenase I, E subunit. (228 aa)
nuoGNADH dehydrogenase I, G subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (976 aa)
nuoHNADH dehydrogenase I, H subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (318 aa)
nuoINADH dehydrogenase I, I subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (184 aa)
nuoKNADH dehydrogenase I, K subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoJNADH dehydrogenase I, J subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (294 aa)
nuoLNADH dehydrogenase I, L subunit. (624 aa)
nuoMNADH dehydrogenase I, M subunit. (525 aa)
SVI_3232Ferredoxin, 4Fe-4S. (84 aa)
nuoANADH dehydrogenase I, A subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (123 aa)
Your Current Organism:
Shewanella violacea
NCBI taxonomy Id: 637905
Other names: S. violacea DSS12, Shewanella violacea DSS12, Shewanella violacea JCM 10179, Shewanella violacea str. DSS12, Shewanella violacea strain DSS12
Server load: medium (58%) [HD]