STRINGSTRING
psbZ psbZ psbJ psbJ psbL psbL psbE psbE psbK psbK psbI psbI psbH psbH psbO psbO psbT psbT psbB psbB psbM psbM psbD-1 psbD-1 psbA-3 psbA-3 psbV psbV psbX psbX psbU psbU
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psbZPhotosystem II core protein PsbZ; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. (62 aa)
psbJPhotosystem II reaction center protein PsbJ; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (66 aa)
psbLPhotosystem II reaction center protein PsbL; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (39 aa)
psbECytochrome b559, alpha subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (82 aa)
psbKPhotosystem II reaction center protein PsbK; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (47 aa)
psbIPhotosystem II reaction center I protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (39 aa)
psbHPhotosystem II reaction center protein PsbH; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (68 aa)
psbOPhotosystem II manganese-stabilizing protein; Identified by match to protein family HMM PF01716. (273 aa)
psbTPhotosystem II reaction centre T protein superfamily protein; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family. (31 aa)
psbBPhotosystem II P680 chlorophyll A apoprotein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (520 aa)
psbMPhotosystem II reaction center protein PsbM; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (36 aa)
psbD-1Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. (351 aa)
psbA-3Photosystem q(b) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (358 aa)
psbVCytochrome c-550; Low-potential cytochrome c that plays a role in the oxygen- evolving complex of photosystem II. (182 aa)
psbXPhotosystem II reaction centre X protein (PsbX); Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II. (40 aa)
psbUPhotosystem II 12 kDa extrinsic protein PsbU; Stabilizes the structure of photosystem II oxygen-evolving complex (OEC), the ion environment of oxygen evolution and protects the OEC against heat-induced inactivation. (125 aa)
Your Current Organism:
Synechococcus sp. CC9311
NCBI taxonomy Id: 64471
Other names: S. sp. CC9311
Server load: low (20%) [HD]